Apple II RedbooRk
Digital Edition

) N,
Gt;:‘u;-‘_ Bl Tgfx
khaibitgfx@gmail.com

«(wog'u)“w»‘

(Wd L°G¥%) .81

Y

apple computer

g
The personal computer. i@clppla

The Apple logo is a trademark of Apple Computer, Inc.,
registered in the U.S. and other countries.

apple2history.org

c
O
A
&v\

0000000000000000000 0000

Apple II
Reference
Manual

January 1978

APPLE I

Reference Manual

APPLE II
Reference Manual

January 1978

Apple Part No. 030-0004-00

APPLE Computer Inc.
10260 Brandley Dr.
Cupertino, CA
95014

APPLE I Reference Manual
TABLE OF CONTENTS

A. GETTING STARTED WITH YOUR

APPLE Il ... 1
1. Unpackingcovviiiininn. 1
2. Warranty Registration Card 1
3. Check for Shipping Damage 2
4. PowerUp ... 2
5. APPLE Il Speaks Several Languages. 3
6. APPLE Integer BASIC 3
7. Running Your First
and Second Programs 3
8. Running 16K Startrek 3
9. Loading a Program Tape 4
10. Breakout and Color Demos Tapes .. 6
11. Breakout and Color
Demos Program Listings 12
12. How to Play Startrek 14
13. Loading HIRES Demo Tape 15
B. APPLE Il INTEGER BASIC........... 17
1. BASIC Commands................ 18
2. BASIC Operators 19
3. BASIC Functions 22
4. BASIC Statements 23
5. Special Control and Editing 28
6. Table A — Graphics Colors 29
7. Special Controls and Features..... 30
8. BASIC Error Messages - 32
9. Simplified Memory Map 33
10. Data Read/Save Subroutines 34
11. Simple Tone Subroutines 43
12. High Resolution Graphics

Subroutines and Listings 46

13. Additional BASIC Program

Examples
a. Rod’s Color Pattern (4K).......
Pong (4K)
Color Sketch (4K)
Mastermind (8K)
Biorhythm (4K)................
Dragon Maze (4K).............

-~ ® 0 0 T

C. APPLE Il FIRMWARE

1.
2. Control and Editing Characters....
3.

4. Annotated Monitor and

5.

6.
7.

System Monitor Commands

Special Controls and Features.....

Dis-assembler Listing
Binary Floating Point Package.....
Sweet 16 Interpreter Listing
65020p Codesccovvn.t.

D. APPLE Il HARDWARE

1.

o M~ N

Getting Started with Your
APPLE Il Board..................

APPLE Il Switching Power Supply .
Interfacing with the Home TV
Simple Serial Output.............

Interfacing the APPLE —
Signals, Loading, Pin
Connections...................
Memory —
Options, Expansion, Map,
Address ...t
System Timing
Schematics......................

GETTING STARTED WITH YOUR APPLE II

Unpacking

Don't throw away the packing material. Save it for the unlikely
event that you may need to return your Apple II for warrantee repair.
If you bought an Apple II Board only, see hardware section in this
manual on how to get started. You should have received the following:

1. Apple II system including mother printed circuit board
with specified amount of RAM memory and 8K of ROM memory,
switching power supply, keyboard, and case assembly.

2. Accessories Box including the following:

a. This manual including warranty card.
b. Pair of Game Paddles
o
d

A.C. Power Cord
Cassette tape with "Breakout"on one side
and "Color Demos" on the other side.
e. Cassette recorder interface cable (miniature
phone jack type)

3. If you purchased a 16K or larger system, your accessory
box should also contain:
a. 16K Startrek game cassette with High Resolution
Graphics Demo ("HIRES") on the flipside.
b. Applesoft Floating Point Basic Language Cassette
with an example program on the other side.
c. Applesoft reference manual

4. In addition other items such as a vinyl carrying case
or hobby board peripherial may have been included if
specifically ordered as "extras".

Notify your dealer or Apple Computer, Inc. immediately if you are
missing any items.

Warranty Registration Card

Fill this card out immediately and completely and mail to Apple in
order to register for one year warranty and to be placed on

owners club mailing Tist. Your Apple II's serial number is located
on the bottom near the rear edge. You model number is:

A2S0OMMX
MM is the amount of memory you purchased. For Example:

A2SQ0Q8X
is an 8K Byte Apple II system.

Check for Damage

Inspect the outside case of your Apple for shipping damage. Gently
1ift up on the top rear of the 1id of the case to release the Tid
snaps and remove the lid. Inspect the inside. Nothing should be
loose and rattling around. Gently press down on each integrated
circuit to make sure that each is still firmly seated in its
socket. Plug in your game paddles into the Apple II board at the
socket marked "GAME I/0" at location J14. See hardware section of
this manual for additional detail. The white dot on the connector
should be face forward. Be careful as this connector is fragile.
Replace the 1id and press on the back top of it to re-snap it into
place.

Power Up

First, make sure that the power ON/OFF switch on the rear power
supply panel on your Apple II is in the "OFF" position. Connect
the A.C. power cord to the Apple and to a 3 wire 120 volt A.C.
outlet. Make sure that you connect the third wire to ground if
you have only a two conductor house wiring system. This ground
is for your safety if there is an internal failure in the Apple
power supply, minimizes the chance of static damage to the Apple,
and minimizes RFI problems.

Connect a cable from the video output jack on the back of the Apple
to a TV set with a direct video input jack. This type of set is
commonly called a "Monitor". If your set does not have a direct
video input, it is possible to modify your existing set. Write for
Apple's Application note on this. Optionally you may connect the
Apple to the antenna terminals of your TV if you use a modulator.
See additional details in the hardware section of this manual under
"Interfacing with the Home TV".

Now turn on the power switch on the back of the Apple. The indicator

light (it's not a switch) on the keyboard should now be ON. If

not, check A.C. connections. Press and release the "Reset" button

on the keyboard. The following should happen: the Apple's internal

speaker should beep, an asterisk ("*") prompt character should appear

at the Tower Teft hand corner of your TV, and a flashing white square

should appear just to the right of the asterisk. The rest of the

TV screen will be made up of radom text characters (typically question marks).

If the Apple beeps and garbage appears but you cannot see an "*" and the
cursor, the horizontal or vertical height settings on the TV need to be
adjusted. Now depress and release the "ESC" key, then hold down the
"SHIFT" key while depressing and releasing the P key. This should

clear your TV screen to all black. Now depress and release the "RESET"
key again. The "*" prompt character and the cursor should return to

the lower left of your TV screen.

Apple Speaks Several Languages

The prompt character indicates which Tanguage your Apple is currently
in. The current prompt character, an asterisk ("*"),indicates that
you are in the "Monitor" language, a powerful machine level language
for advanced programmers. Details of this language are in the
"Firmware" section of this manual.

Apple Integer BASIC

Apple also contains a high level English oriented language called
Integer BASIC, permanently in its ROM memory. To switch to this
language hold down the "CTRL" key while depressing and releasing the
"B" key. This is called a control-B function and is similiar to

the use of the shift key in that it indicates a different function
to the Apple. Control key functions are not displayed on your

TV screen but the Apple still gets the message. Now depress and
release the "RETURN" key to tell Apple that you have finished typing
a line on the keyboard. A right facing arrow (">") called a caret
will now appear as the prompt character to indicate that Apple is
now in its Interger BASIC language mode.

Running Your First and Second Program

Read through the next three sections that include:

1. Loading a BASIC program Tape
2. Breakout Game Tape
3. Color Demo Tape

Then load and run each program tape. Additional information on
Apple II's interger BASIC is in the next section of this manual.

Running 16K Startrek

If you have 16K Bytes or larger memory in your Apple, you will also
receive a "STARTREK" game tape. Load this program just as you did
the previous two, but before you "RUN" it, type in "HIMEM: 16384"
to set exactly where in memory this program is to run.

LOADING A PROGRAM TAPE

INTRODUCTION

This section describes a procedure for loading BASIC programs
successfully into the Apple II. The process of Toading a program is divided
into three section; System Checkout, Loading a Tape and What to do when
you have Loading Problems. They are discussed below.

When Toading a tape, the Apple II needs a signal of about 2 1/2 to 5
volts peak-to-peak. Commonly, this signal is obtained from the "Monitor"
or "earphone" output jack on the tape recorder. Inside most tape recorders,
this signal is derived from the tape recorder's speaker. One can take
advantage of this fact when setting the volume levels. Using an Apple
Computer pre-recorded tape, and with all cables disconnected, play the tape
and adjust the volume to a loud but un-distorted Tevel. You will find that
this volume setting will be quite close to the optimum setting.

Some tape recorders (mostly those intended for use with hi-fi sets)
do not have an "earphone" or high-Tevel "monitor" output. These machines
have outputs Tabeled"line output" for connection to the power amplifier.
The signal Tevels at these outputs are too low for the Apple II in most cases.

Cassette tape recorders in the $4p - $50 range generally have ALC
(Automatic Level Control) for recording from the microphone input. This feature
is useful since the user doesn't have to set any volume controls to obtain
a good recording. If you are using a recorder which must be adjusted, it
will have a level meter or a little light to warn of excessive recording levels.
Set the recording level to just below the Tevel meter's maximum, or to just a
dim indication on the level Tamp. Listen to the recorded tape after you've
saved a program to ensure that the recording is "loud and clear".

Apple Computer has found that an occasional tape recorder will not function
properly when both Input and OQutput cables are plugged in at the same time.
This problem has been traced to a ground Toop in the tape recorder itself which
prevents making a good recording when saving a program. The easiest solution
is to unplug the "monitor" output when recording. This ground loop does not
influence the system when loading a pre-recorded tape.

Tape recorder head alignment is the most common source of tape recorder
problems. If the playback head is skewed, then high frequency information
on pre-recorded tapes is lost and all sorts of errors will result. To confirm
that head alignment is the problem, write a short program in BASIC. >10 END
is sufficient. Then save this program. And then rewind and load the program.
If you can accomplish this easily but cannot load pre-recorded tapes, then
head alignment problems are indicated.

Apple Computer pre-recorded tapes are made on the highest quality professional
duplicating machines, and these tapes may be used by the service technician to
align the tape recorder's heads. The frequency response of the tape recorder
should be fairly good; the 6 KHz tone should be not more than 3 db down from
a 1 KHz tone, and a 9 KHz tone should be no more than 9 db down. Note that
recordings you have made yourself with mis-aligned heads may not not play
properly with the heads properly aligned. If you made a recording with a
skewed record head, then the tiny magnetic fields on the tape will be skewed as
well, thus playing back properly only when the skew on the tape exactly matches
the skew of the tape recorder's heads. If you have saved valuable programs with
a skewed tape recorder, then borrow another tape recorder, load the programs with
the old tape recorder into the Apple, then save them on the borrowed machine.
Then have your tape recorder properly aligned.

Listening to the tape can help solve other problems as well. Flaws in the
tape, excessive speed variations, and distortion can be detected this way.
Saving a program several times in a row is good insurance against tape flaws.
One thing to listen for is a good clean tone lasting for at Teast 3 1/2 seconds
is needed by the computer to "set up" for proper loading. The Apple puts out
this tone for anout 10 seconds when saving a program, so you normally have
6 1/2 seconds of leeway. If the playback volume is too high, you may pick up tape
noise before getting to the set-up tone. Try a lower playback volume.

SYSTEM CHECKOUT

A quick check of the Apple II computer system will help you spot any
problems that might be due to improperly placed or missing connections between
the Apple II, the cassette interface, the Video display, and the game
paddles. This checkout procedure takes just a few seconds to perform and
is a good way of insuring that everything is properly connected before the
power is turned on.

1. POWER TO APPLE - check that the AC power cord is plugged
into an appropriate wall socket, which includes a "true"
ground and is connected to the Apple II.

2. CASSETTE INTERFACE - check that at Teast one cassette
cable double ended with miniature phone tip jacks is
connected between the Apple II cassette Input port and
the tape recorder's MONITOR plug socket.

3. VIDEO DISPLAY INTERFACE -

a) for a video monitor - check that a cable connects
the monitor to the Apple's video output port.
b) for a standard television - check that an adapter

(RF modulator) is plugged into the Apple II (either
in the video output (K 14) or the video auxiliary
socket (J148), and that a cable runs between the
television and the Adapter's output socket.

4, GAME PADDLE INTERFACE - if paddles are to be used, check
that they are connected into the Game I/0 connector (J14)
on the right-hand side of the Apple II mainboard.

5. POWER ON - fTip on the power switch in back of the Apple II,
the "power" indicator on the keyboard will Tight. Also
make sure the video monitor (or TV set) is turned on.

After the Apple II system has been powered up and the video display
presents a random matrix of question marks or other text characters the
following procedure can be followed to Toad a BASIC program tape:

1. Hit the RESET key.
An asterick, "*",should appear on the Tefthand side
of the screen below the random text pattern. A flashing
white cursor will appear to the right of the asterick.

2. Hold down the CTRL key, depress and release the B key,
then depress the "RETURN" key and release the "CTRL" key.
A right facing arrow should appear on the lefthand side
of the screen with a flashing cursor next to it. If it
doesn't, repeat steps 1 and 2.

3. Type in the word "LOAD" on the keyboard. You should see
the word in between the right facing arrow and the
flashing cursor. Do not depress the "RETURN" key yet.

4. Insert the program cassette into the tape recorder and
rewind it.

5. If not already set, adjust the Volume control to 5@-70%
maximum. If present, adjust the Tone control to 80-100%
maximum.

6. Start the tape recorder in "PLAY" mode and now depress
the "RETURN" key on the Apple II.

7. The cursor will disappear and Apple II will beep in a
few seconds when it finds the beginning of the program.
If an error message is flashed on the screen, proceed
through the steps listed in the Tape Problem section
of this paper.

8. A second beep will sound and the flashing cursor will
reappear after the program has been successfully loaded
into the computer.

9. Stop the tape recorder. You may want to rewind the program
tape at this time.

10. Type in the word "RUN" and depress the "RETURN" key.

The steps in loading a program have been completed and if everying has
gone satisfactorily the program will be operating now.

LOADING PROBLEMS

Occasionally, while attempting to load a BASIC program Apple II
beeps and a memory full error is written on the screen. At this time
you might wonder what is wrong with the computer, with the program tape,
or with the cassette recorder. Stop. This is the time when you need
to take a moment and checkout the system rather than haphazardly attempt-
ing to resolve the loading problem. Thoughtful action taken here will
speed in a program's entry. If you were able to successfully turn on the
computer, reset it, and place it into BASIC then the Apple II is probably
operating correctly. Before describing a procedure for resolving this
loading problem, a discussion of what a memory full error is in order.

The memory full error displayed upon loading a program indicates that
not enough (RAM) memory workspace is available to contain the incoming data.
How does the computer know this? Information contained in the beginning of
the program tape declares the record Tength of the program. The computer
reads this data first and checks it with the amount of free memory. If
adequate workspace is available program Toading continues. If not, the
computer beeps to indicate a problem, displays a memory full error statement,
stops the Toading procedure, and returns command of the system to the key-
board. Several reasons emerge as the cause of this problem.

Memory Size too Small

Attempting to Toad a 16K program into a 4K Apple II will generate this
kind of error message. It is called loading too large of a program. The
solution is straight forward: only load appropriately sized programs into
suitably sized systems.

Another possible reason for an error message is that the memory pointers
which indicate the bounds of available memory have been preset to a smaller
capacity. This could have happened through previous usage of the "HIMEN:"
and "LOMEN:" statements. The solution is to reset the pointers by BC (CTRL B)
command. Hold the CTRL key down, depress and release the B key, then depress
the RETURN key and release the CTRL key. This will reset the system to max-
imum capacity.

Cassette Recorder Inadjustment

If the Volume and Tone controls on the cassette recorder are not
properly set a memory full error can occur. The solution is to adjust
the Volume to 5@-70% maximum and the Tone (if it exists) to 80-100%
maximum.*

A second common recorder problem is skewed head azimuth. When
the tape head is not exactly perpendicular to the edges of the magnetic
tape some of the high frequency data on tape can be skipped. This causes
missing bits in the data sent to the computer. Since the first data read
is record length an error here could cause a memory full error to be
generated because the length of the record is inaccurate. The solution:
adjust tape head azimuth. It is recommended that a competent technician
at a Tocal stereo shop perform this operation.
Often times new cassette recorders will not need this adjustment.

*Apple Computer Inc. has tested many types of cassette recorders and so far
the Panasonic RQ-3P9 DS (Tess than $4p.p0) has an excellent track record
for program loading.

Tape Problems

A memory full error can result from unintentional noise existing in
a program tape. This can be the result of a program tape starting on its
header which sometimes causes a glitch going from a nonmagnetic to magnetic
recording surface and is interpreted by the computer as the record length.
Or, the program tape can be defective due to false erasure, imperfections
in the tape, or physical damage. The solution is to take a moment and
listen to the tape. If any imperfections are heard then replacement of the
tape is called for. Listening to the tape assures that you know what a
"good" program tape sounds like. If you have any questions about this please
contact your Tocal dealer or Apple for assistance.

If noise or a glitch is heard at the beginning of a tape advance the
tape to the start of the program and re-Load the tape.

Dealing with the Loading Problem

With the understanding of what a memory full error is an efficient way
of dealing with program tape loading problems is to perform the following
procedure:

1. Check the program tape for its memory requirements.
Be sure that you have a large enough system.

2. Before Toading a program reset the memory pointers
with the B: (control B) command.

3. In special cases have the tape head azimuth
checked and adjusted.

4. Check the program tape by listening to it.
a) Replace it if it is defective, or
b) start it at the beginning of the program.
5. Then re-LOAD the program tape into the Apple II.
In most cases if the preceeding is followed a good tape load will result.
UNSOLVED PROBLEMS

If you are having any unsolved loading problems, contact your
nearest local dealer or Apple Computer Inc.

BREAKOUT GAME TAPE

PROGRAM DESCRIPTION

Breakout is a color graphics game for the Apple II computer. The object of
the game is to "knock-out' all 160 colored bricks from the playing field by
hitting them with the bouncing ball. You direct the ball by hitting it with
a paddle on the Teft side of the screen. You control the paddle with one of
the Apple's Game Paddle controllers. But watch out: you can only miss the
ball five times!

There are eight columns of bricks. As you penetrate through the wall the
point value of the bricks increases. A perfect game is 720 points; after
five balls have been played the computer will display your score and a
rating such as "Very Good". "Terrible!", etc. After ten hits of the ball,
its speed with double, making the game more difficult. If you break through
to the back wall, the ball will rebound back and forth, racking up points.

Breakout is a challenging game that tests your concentration, dexterity,
and skill.

REQUIREMENTS

This program will fit into a 4K or greater system.
BASIC is the programming language used.

PLAYING BREAKOUT

1. Load Breakout game following instructions in the "Loading
a BASIC Program from Tape" section of this manual.

2. Enter your name and depress RETURN key.

3 If you want standard BREAKOUT colors type in Y or Yes

and hit RETURN. The game will then begin.

4, If the answer to the previous questions was N or No
then the available colors will be displayed. The
player will be asked to choose colors, represented by a
number from @ to 15, for background, even bricks, odd
bricks, paddle and ball colors. After these have been
chosen the game will begin.

10

5. At the end of the game you will be asked if they
want to play again. A Y or Yes response will start
another game. A N or No will exit from the program.

NOTE: A game paddle (15@0k ohm potentiometer) must be connected
to PDL (@) of the Game I/0 connector for this game.

COLOR DEMO TAPE

PROGRAM DESCRIPTION

COLOR DEMO demonstrates some of the Apple II video graphics
capabilities. In it are ten examples: Lines, Cross, Weaving,
Tunnel, Circle, Spiral, Tones, Spring, Hyperbola, and Color Bars.
These examples produce various combinations of visual patterns
in fifteen colors on a monitor or television screen. For example,
Spiral combines colorgraphics with tones to produce some amusing
patterns. Tones illustrates various sounds that you can produce
with the two inch Apple speaker. These examples also demonstrate
how the paddle inputs (PDL(X)) can be used to control the audio
and visual displays. Ideas from this program can be incorporated
into other programs with a Tittle modification.

REQUIREMENTS

4K or greater Apple II system, color monitor or television,
and paddles are needed to use this program. BASIC is the pro-
gramming language used.

11

BREAKOUT GAME
PROGRAM LISTING

PROGRAM LISTING

12

COLOR DEMO PROGRAM
LISTING

PROGRAM LISTING

13

I it kS e R e AFFLE II STARTREK VERSION e e R e e el

THIS IS A SHORT DESCRIFTION OF HOW TO FLAY STARTREK ON THE
AFFLE COMFUTER.

THE UNIVERSE IS MADE UF OF 44 QUADRANTS IN AN 8 BY 8 MATRIX.
THE QUADRANT IN WHICH YOU *THE ENTERFRISE ® AREs IS IN WHITE.
AND A BLOW UF OF THAT QUADRANT IS FOUND IN THE LOWER LEFT
CORNER . YOUR SFACE SHIF STATUS IS FOUND IN A TABLE TO

THE RIGHT SIDE OF THE QUADRANT BLOW UF.

THIS IS5 A SEARCH AND DESTROY MISSION. THE OBJECT IS TO LONG-RANGE
SENSE FOR INFORMATION AS TO WHERE KLINGONS (K) ARE. MOVE TO THAT QUADRANT.
AND DESTROY.

NUMBERS DISFLAYED FOR EACH RUADRANT DENOTE:

OF STARS IN THE ONES FLACE

OF BASES IN THE TENS FLACE

OF KLINGONS IN THE HUNDREDS FLACE

AT ANY TIME DURING THE GAMEs FOR INSTANCE BEFORE ONE TOTALLY

RUNS OUT OF ENERGY: OR NEEDS TO REGENERATE ALL SYSTEMS. ONE MOVES TO A
QUADRANT WHICH INCLUDES A BASE. IONS NEXT TO THAT BASE (B) AT WHICH TIME
THE BASE SELF-DESTRUCTS AND THE ENTERFRISE (E) HAS ALL SYSTEMS *GO°
AGAIN.

TO FLAY:
1. THE COMMANDS CAN BE OBTAINED BY TYFING A "0" (ZERO) AND RETURN.
THEY ARE:

1. FROFULSION 2. REGENERATE

3. LONG RANGE SENSORS 4. FHASERS

5. FHOTON TORFEDOES 6. GALAXY RECORD

7. COMFUTER 8. FROBE

9. SHIELD ENERGY 10.DAMAGE REFORT

11.L0AD FHOTON TORFEDOES
2. THE COMANDS ARE INVOKED BY TYFING THE NUMBER REFERING TO THEM
FOLLOWED BY A °"RETURN®.
A. IF RESFONSE IS 1 THE COMFUTER WILL ASK WARF OR ION AND
EXFECTS "W® IF ONE WANTS TO TRAVEL IN THE GALAXY
BETWEEN QUADRANTS AND AN "I" IF ONE WANTS ONLY
INTERNAL QUADRANT TRAVEL.
DURATION OF WARF FACTOR IS THE NUMBER OF SFACES OR
RUADRANTS THE ENTERFRISE WILL MOVE.
COURSE IS COMFASS READING IN DEGREES FOR THE DESI-—
RED DESTINATION.
B. A 2 REGENERATES THE ENERGY AT THE EXFENSE OF TIME.
C. A 3 GIVES THE CONTENTS OF THE IMMEDIATE. ADJACENT GQUADRANTS.
THE GALAXY IS WRAF—AROUND IN ALL DIRECTIONS.
D. 4 FIRES FHASERS AT THE EXFENSE OF AVAILABLE ENERGY.

E. 5 INITIATES A SET OF RUESTIONS FOR TORFEDO FIRING.
THEY CAN BE FIRED AUTOMATICALLY IF THEY HAVE
BEEN LOCKED ON TARGET WHILE IN THE COMFUTER
MODEs OR MAY BE FIRED MANUALLY IF THE TRAGECTORY ANGLE
IS KNOWN.
F. 6 8 AND 10 ALL GIVE INFORMATION ABOUT THE STATUS OF THE SHIF
AND ITS ENVIRONMENT.
G. 9 SETS THE SHIELD ENERGY/AVAILABLE ENERGY RATIO.
H. 11 ASKS FOR INFORMATION ON LOADING AND UNLOADING OF
FHOTON TORFEDOES AT THE ESFENSE OF AVAILABLE ENERGY.
THE ANSWER SHOULD BE A SIGNED NUMBER. FOR EXAMFLE

+3 OR -2.
I. 7 ENTERS A COMFUTER WHICH WILL RESFOND TO THE FOLLOWING
INSTRUCTIONS?:
1. COMFUTE COURSE 2. LOCK FHASERS
3. LOCK FHOTON TORFEDOES
4, LOCK COURSE 5. COMFUTE TREJECTORY
6. STATUS 7. RETURN TO COMAND MODE

IN THE FIRST FIVE ONE WILL HAVE TO GIVE COORDINATES.
COORDINATES ARE GIVEN IN MATHMATICAL NOTATION WITH
THE EXCEFTION THAT THE "Y*®" VALUE IS GIVEN FIRST.

AN EXAMFLE WOULD BE *"Y\X*

COURSE OR TRAJECTORY:

70

270

R T S)

[

—s+—s—s—s—s—s—+— THIS EXFLANATION WAS WRITTEN BY ELWOOD —e—s—s—s—s—s—s—s—
NOT RESFONSIBLE FOR
ERRORS

14

LOADING THE HI-RES DEMO TAPE

PROCEDURE

1.

Power up system - turn the AC power switch in the back
of the Apple II on. You should see a random matrix of
question marks and other text characters. If you don't,
consult the operator's manual for system checkout pro-
cedures.

Hit the RESET key. On the left hand side of the screen
you should see an asterisk and a flashing cursor next to
it below the text matrix.

Insert the HI-RES demo tape into the cassette and rewind
it. Check Volume (50-70%) and Tone (80-100%) settings.

Type in "CO@.FFFR" on the Apple II keyboard. This is the
address range of the high resolution machine Tanguage sub-
program. It extends from $C@@ to $FFF. The R tells the
computer to read in the data. Do not depress the "RETURN"
key yet.

Start the tape recorder in playback mode and depress the
"RETURN" key. The flashing cursor disappears.

A beep will sound after the program has been read in.
STOP the tape recorder. Do not rewind the program tape yet.

Hold down the "CTRL" key, depress and release the B key,
then depress the "RETURN"™ key and release the "CTRL" key.
You should see a right facing arrow and a flashing cursor.
The Bc command places the Apple into BASIC initializing
the memory pointers.

Type in "LOAD", restart the tape recorder in playback mode
and hit the "RETURN" key. The flashing cursor disappears.
This begins the Toading of the BASIC subprogram of the
HI-RES demo tape.

A beep will sound to indicate the program is being loaded.

15

10. A second beep will sound, and the right facing arrow
will reappear with the flashing cursor. STOP the
tape recorder. Rewind the tape.

11. Type in "HIMEM:8192" and hit the "RETURN" key. This
sets up memory for high resolution graphics.

12. Type in "RUN" and hit the "RETURN" key. The screen

should clear and momentarily a HI-RES demo menu table
should appear. The loading sequence is now completed.

SUMMARY OF HI-RES DEMO TAPE LOADING

1. RESET
2. Type in CO@.FFFR
3. Start tape recorder, hit RETURN

4, Asterick or flashing cursor reappear
Bc (CTRL B) into BASIC

5. Type in "LOAD", hit RETURN

6. BASIC prompt (7) and flashing cursor
reappear. Type in "HIMEN:8192", hit
RETURN

7. Type in "RUN", hit RETURN

8. STOP tape recorder, rewind tape.

16

APPLE Il INTEGER BASIC

[N U G
W N = O o

© NSO~

BASIC Commands

BASIC Operators

BASIC Functions

BASIC Statements

Special Control and Editing
Table A — Graphics Colors
Special Controls and Features
BASIC Error Messages
Simpfilied Memory Map

. Data Read Save Subroutines

. Simple Tone Subroutires

. High Resolution Graphics

. Additional BASIC Program Examples

BASIC COMMANDS

Commands are executed immediately; they do not require line numbers.Most Statements
(see Basic Statements Section) may also be used as commands. Remember to press
Return key after each command so that Apple knows that you have finished that

line. Multiple commands (as opposed to statements) on same line separated by

a " : " are NOT allowed.

COMMAND NAME

AUTO num Sets automatic line numbering mode. Starts at line
number num and increments Tine numbers by 10. To
exit AUTO mode, type a control X*, then type the
letters "MAN" and press the return key.

>

UTO numl, numa Same as above execpt increments line numbers by
number nume.

[qp]
—
=

Clears current BASIC variables; undimensions arrays.
Program is unchanged.

[qp]
=

Continues program execution after a stop from a
control C*. Does not change variables.

lww)
—

numl, Deletes 1line number numl.

lww)
—

numl, numaéa Deletes program from line numbernuml through Tine
number numa.

(e
O

var Sets debug mode that will display variable var every
time that it is changed along with the line number
that caused the change. (NOTE: RUN command clears
DSP mode so that DSP command is effective only if
program is continued by a CON or GOTO command.)

HIMEM expr Sets highest memory location for use by BASIC at
location specified by expression expr in decimal.
HIMEM: may not be increased without destroying program.
HIMEM: s automatically set at maximum RAM memory when
BASIC is entered by a control B*.

GOTO expr Causes immediate jump to Tine number specified by
expression expr.

GR Sets mixed color graphics display mode. Clears screen
to black. Resets scrolling window. Displays 40x40
squares in 15 colors on top of screen and 4 lines of text
at bottom.

—
—
wn
—

Lists entire program on screen.

—
—
w
—

numl

Lists program line numbernuml.

—
—
wn
—

numl, nume

Lists program line numbernumlthrough Tine number
nUma.

18

LOAD expr.
LOMEM: expr
MAN

NEW

NO DSP var
NO TRACE
RUN

RUN excpr
SAVE

TEXT
TRACE

Reads (Loads) a BASIC program from cassette tape.

Start tape recorder before hitting return key. Two
beeps and a " > " indicate a good load. "ERR" or "MEM"
FULL ERR"™ message indicates a bad tape or poor recorder
performance.

Similar to HIMEM: except sets lowest memory location
available to BASIC. Automatically set at 2048 when
BASIC is entered with a control B*. Moving LOMEM:
destroys current variable values.

Clears AUTO line numbering mode to all manual line
numbering after a control C* or control X*.

Clears (Scratches) current BASIC program.
Clears DSP mode for variable var.
Clears TRACE mode.

Clears variables to zero, undimensions all arrays and
executes program starting at lowest statement line
number.

Clears variables and executes program starting at line
number specified by expression expr.

Stores (saves) a BASIC program on a cassette tape.
Start tape recorder in record mode prior to hitting
return key.

Sets all text mode. Screen is formated to display
alpha-numeric characters on 24 lines of 40 characters
each. TEXT resets scrolling window to maximum.

Sets debug mode that displays line number of each
statement as it is executed.

Control characters such as control X or control C are
typed by holding down the CTRL key while typing the
specified Tetter. This is similiar to how one holds

down the shift key to type capital letters. Control
characters are NOT displayed on the screen but are
accepted by the computer. For example, type several
control G's. We will also use a superscript C to indicate
a control character as in XC.

19

BASIC Operators

Symbol Sample Statement

Prefix Operators

() 10 X= 4*(5 + X)

+ 20 X= 1+4*5

- 30 ALPHA =
-(BETA +2)

NOT 49 TIF A NOT B THEN
200

Arithmetic Operators

1 60 Y = X 3
* 70 LET DOTS=A*B*N2
/ 80 PRINT GAMMA/S
MOD 99 X = 12 MOD 7
190 X = X MOD(Y+2)
+ 1M P=L+G
- 120 XY4 = H-D

= 130 HEIGHT=15
140 LET SIZE=7*5
150 A(8) =2
155 ALPHA$ = "PLEASE"

Explanation

Expressions within parenthesis ()
are always evaluated first.

Optional; +1 times following expression.
Negation of following expression.
Logical Negation of following expression;

@ if expression is true (non-zero), 1
if expression is false (zero).

Exponentiate as in X3 . NOTE: 1 is
shifted letter N.

Multiplication. NOTE: Implied multi-
plication such as (2 + 3)(4) is not
allowed thus N2 in example is a variable
not N * 2.

Divide

Modulo: Remainder after division of
first expression by second expression.

Add
Substract

Assignment operator; assigns a value to
a variable. LET is optional

20

Relational and Logical Operators

The numeric values used in logical evaluation are "true"™ if non-zero,
"false" if zero.

Symbol Sample Statement
= 160 IFD=E
THEN 500
= 170 IF A$(1,1)=
"Y" THEN 500
or <> 180 IF ALPHA #X*Y
THEN 500
190 IF A$ # "NO"
THEN 500
> 200 IF A>B
THEN GO TO 50
< 210 IF A+1<B-5
THEN 100
>= 220 IF A>=B
THEN 100
(= 230 IF A+1<=B-6
THEN 200
AND 240 IF A>B AND
C<D THEN 200
OR 250 IF ALPHA OR

BETA+1 THEN 200

Explanation

Expression "equals" expression.
String variable "equal'string variable.
Expression "does not equal" expression.

String variable "does not equal” string
variable. NOTE: If strings are not

the same length, they are considered
un-equal. < > not allowed with strings.

Expression "is greater than" expression.
Expression "is less than" expression.
Expression "is greater than or equal to"

expression.

Expression "is less than or equal to"
expression.

Expression 1 "and" expression 2 must
both be "true" for statements to be true.

I[f either expression 1 or expression 2
is "true", statement is "true".

21

BASIC FUNCTIONS

Functions return a numeric result.
of expressions.

They may be used as expressions or as part
PRINT is used for examples only, other statements may

be used. Expressions following function name must be enclosed between two

parenthesis signs.

FUNCTION NAME

ABS (expr)
ASC (str$)

LEN (str$)

PDL (expr)

PEEK (expr)

RND (expr)

SCRN (exprl,
expra)

SGN (expr)

300

310
320
330
335

340

350

360

370

380

390

PRINT

PRINT
PRINT
PRINT
PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

ABS(X)

Gives absolute value of the expression expr.

ASC("BACK") Gives decimal ASCII value of designated

ASC(B$)

string variable str. If more than one

ASC(B$(4,4))character is in designated string or

ASC(B$(Y))

LEN(BS$)

PDL(X)

PEEK(X)

RND(X)

sub-string, it gives decimal ASCII
value of first character.

Gives current length of designated
string variable sir$;i.e., number of
characters.

Gives number between @ and 255 corresponding
ponding to paddle position on game paddle
number designated by expression expr and must
be legal paddle (@8,1,2,0or 3) or else 255 is
returned.

Gives the decimal value of number stored
of decimal memory location specified by
expression expr. For MEMORY locations
above 32676, use negative number; i.e.,
HEX Tocation FFF@ is -16

Gives random number between V and
(expression expr -1) if expression expr

is positive; if minus, it gives random
number between @ and (expression expr +1).

SCRN (X1,Y1)Gives color (number between @ and 15) of

SGN(X)

screen at horizontal location designated

by expression exprl and vertical

location designated by expression exprg
Range of expression exprl is @ to 39. Range
of expression expr2 is @ to 39 if in standar

mixed colorgraphics display mode as set by

GR command or @ to 47 if in all color mode
set by POKE -16304 ,0: POKE - 16302,0°'.

Gives sign (not sine) of expression expr

i.e., -1 if expression expr is negative,zero
zero and +1 if expris positive.

22

BASIC STATEMENTS

Each BASIC statement must have a line number between @ and 32767. Variable
names must start with an alpha character and may be any number of alpha-

numeric characters up to 100.
of the following words: AND, AT, MOD, OR, STEP, or THEN.
not begin with the letters END, LET, or REM.
with a $ (dollar sign).
if separated by a :

Variable names may not contain buried any

Variable names may
String variables names must end

Multiple statements may appear under the same line number
(colon) as long as the total number of characters in the line

(including spaces) is less than approximately 150 characters
Most statements may also be used as commands. BASIC statements are executed
by RUN or GOTO commands.

NAME
CALL expr
COLOR=expr

DIM varl (exprl)
str$ (expre)
vara (exprs)

DSPvar

19 CALL-936

30 COLOR=12

50 DIM A(20),B(10)

60 DIM B$(30)

70 DIM C (2)
ITlegal:

80 DIM A(30)
Legal:

85 DIM C(1000)

Legal:

9@ DSP AX: DSP L
ITlegal:

100 DSP AX,B

102 DSP AB$

104 DSP A(5)
Legal:

105 A=A(5): DSP A

Causes execution of a machine Tevel
language subroutine at decimal memory
location specified by expression expr
Locations above 32767 are specified using
negative numbers; i.e., location in
example 10 is hexidecimal number $FC53

In standard resolution color (GR)

graphics mode, this command sets screen

TV color to value in expression expr

in the range @ to 15 as described in

Table A. Actually expression expr may be

in the range @ to 255 without error message
since it is implemented as if it were
expression expr MOD 16.

The DIM statement causes APPLE II to
reserve memory for the specified variables.
For number arrays APPLE reserves
approximately 2 times exprbytes of memory
limited by available memory. For string
arrays -stré-(expr) must be in the range of

1 to 255. Last defined variable may b'e
redimensioned at any time; thus, example

in 1ine is illegal but 85 is allowed.

Sets debug mode that DSP variable var each

time it changes and the line number where the

change occured.

23

NAME
END

FOR var=
exp'@l T0expra
STEPexpr3

GOSUB expr

GOTO expr

HLIN exprl,
expreATexpr3

Note:

EXAMPLE

110

110
120
130
150

140

160
170

180
190

200
210

END

FOR L=0 to 39
FOR X=Y1 TO Y3
FOR 1=39 TO 1
GOSUB 1@@ *J2

GOSUB 500

GOTO 200
GOTO ALPHA+100

GR
GR: POKE -16302,0

HLIN 2,39 AT 20
HLIN Z,7+6 AT 1

DESCRIPTION

Stops program execution. Sends carriage
return and "> " BASIC prompt) to screen.

Begins FOR...NEXT Toop, initializes

variable var to value of expression exprl

then increments it by amount in expression
expr3 each time the corresponding "NEXT"
statement is encountered, until value of
expression expr2 is reached. If STEP expr3

is omitted, a STEP of +1 is assumed. Negative
numbers are allowed.

Causes branch to BASIC subroutine starting
at legal Tine number specified by expression
expr Subroutines may be nested up to

16 levels.

Causes immediate jump to Tegal Tine
number specified by expression expr.

Sets mixed standard resolution color
graphics mode. Initializes COLOR = @
(Black) for top 40x40 of screen and sets
scrolling window to Tines 21 through 24
by 4@ characters for four lines of text
at bottom of screen. Example 190 sets

all color mode (40x48 field) with no text
at bottom of screen.

In standard resolution color graphics mode,
this command draws a horizontal Tine of a
predefined color (set by COLOR=) starting

at horizontal position defined by expression
exprl and ending at position expr2 at
vertical position defined by expression

exprd .exprl and expr2 must be in the range

of @ to 39 and exprl < = exprd . expr3

be in the range of @ to 39 (or @ to 47 if not
in mixed mode).

HLIN @, 19 AT @ is a horizontal Tine at the top of the screen
extending from left corner to center of screen and HLIN 20,39 AT
39 is a horizontal line at the bottom of the screen extending from

center to right corner.

24

IF expression 220 IF A> B THEN
HEN statement PRINT A
230 IF X=0 THEN C=1

240 TF A#1@ THEN

[f expression is true (non-zero) then
execute statement; if false do not
execute statement. If statement
is an expression, then a GOTO expr

GOSUB 200 type of statement is assumed to be implied.
250 IF A$(CL,1)# "Y" The "ELSE" in example 260 is illegal but
THEN 100 may be implemented as shown in example 270.
ITlegal:
260 IF L> 5 THEN 50:
ELSE 60
Legal:
270 IF L> 5 THEN 50
GO TO 60
INPUT wvarl,
vard, stré 280 INPUT X,Y,Z(3) Enters data into memory from I/0
290 INPUT "AMT", device. If number input is expected,
DLLR APPLE wil output "?"; if string input is
300 INPUT "Y or N?", A$ expected no "?" will be outputed. Multiple
numeric inputs to same statement may be
separated by a comma or a carriage return.
String inputs must be separated by a
carriage return only. One pair of " " may
be used immediately after INPUT to output
prompting text enclosed within the quotation
marks to the screen.
IN# expr 310 IN# 6 Transfers source of data for subsequent
320 IN# Y+2 INPUT statements to peripheral I/0 slot
330 IN# 0 (1-7) as specified as by expression expr.
STot @ is not addressable from BASIC.
IN#0 (Example 330) is used to return data
source from peripherial I/0 to keyboard
connector.
LET 340 LET X=5 Assignment operator. "LET" is optional
LIST numl, 350 IF X > 6 THEN Causes program from line number numl
numa LIST 50 through 1ine number num2 to be displayed
on screen.
NEXT varl, 360 NEXT I Increments corresponding "FOR" variable
vard 370 NEXT J,K and Toops back to statement following
"FOR" until variable exceeds limit.
NO DSP var 380 NO DSP I Turns-off DSP debug mode for variable
NO TRACE 390 NO TRACE Turns-off TRACE debug mode

25

PLOT exprl, exprg 490 PLOT 15, 25 In standard resolution color

400 PLT XV,YV graphics, this command plots a small
square of a predefined color (set
by COLOR=) at horizontal location
specified by expression exprl in
range @ to 39 and vertical Tocation
specified by expression expr2 in range
@ to 39 (or @ to 47 if in all graphics
mode) NOTE: PLOT @ @ is upper left
and PLOT 39, 39 (or PLOT 39, 47) is
lTower right corner.

POKE exprl, expra 420 POKE 20, 40 Stores decimal number defined by
430 POKE 7%*256, expression exprg in range of 0
XM0D255 255 at decimal memory location

specified by expression exprl
Locations above 32767 are specified
by negative numbers.

POP 449 POP "POPS" nested GOSUB return stack
address by one.

PRINT varl, var, stré 45@ PRINT LT Qutputs data specified by variable
46@ PRINT Li, X2 var or string variable sir$ starting
47@ PRINT "AMT=";DX at current cursor location. If there
480 PRINT A$;BS; is not trailing "," or ";" (Ex 450)
49@ PRINT a carriage return will be generated.
492 PRINT "HELLO"
494 PRINT 2+3 Commas (Ex. 460) outputs data in 5

left justified columns. Semi-colon

(Ex. 470) inhibits print of any spaces.
Text imbedded in " "™ will be printed
and may appear multiple times.

PR# expr 500 PR# 7 Like IN#, transfers output to I/0
slot defined by expression expr PR#
@ is video output not I/0 slot @.

REM 510 REM REMARK No action. A1l characters after REM
are treated as a remark until terminated
by a carriage return.

RETURN 52@ RETURN Causes branch to statement following
530 IFX= 5 THEN last GOSUB; i.e., RETURN ends a
RETURN subroutine. Do not confuse "RETURN"

statement with Return key on keyboard.

26

TAB expr

TRACE

LIN exprl, expre
AT expr3

VTAB expr

530 TAB 24

540 TAB 1+24

550 IF A#B THEN
TAB 20

550 TEXT
560 TEXT: CALL-936

570 TRACE
580 IFN >32000
THEN TRACE

590 VLIN @, 39AT15
600 VLIN Z,Z+6ATY

610 VTAB 18
620 VTAB Z+2

27

Moves cursor to absolute horizontal
position specified by expression

expr in the range of 1 to 40. Position
is left to right

Sets all text mode. Resets

scrolling window to 24 lines by 40
characters. Example 560 also clears
screen and homes cursor to upper Teft
corner

Sets debug mode that displays each
1ine number as it is executed.

Similar to HLIN except draws vertical
line starting at exprl and ending at
expre at horizontal position expr3.

Similar to TAB. Moves cursor to
absolute vertical position specified
by expression expr in the range 1 to
24. VTAB 1 is top line on screen;
VTAB24 is bottom.

SPECTAL CONTROL AND EDITING CHARACTERS

"Control" characters are indicated by a super-scripted "C" such as G. They
are obtained by holding down the CTRL key while typing the letter.

Control characters are NOT displayed on the TV screen. B® and C® must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dg. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, UC moves to
cursor to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transfered to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays line number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"),
control C and a carraige return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)

Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "<«" on right side of keyboard
that provides this functions without using control button.

Control J Issues line feed only

Control V Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "-" key on
right side which also performs this function.

Control X Immediately deletes current line.

* If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

28

CHARACTER

Table A:

Note:

DESCRIPTION OF ACTION

Move cursor to right

Move cursor to left

Move cursor down

Move cursor up

Clear text from cursor to end of line

Clear text from cursor to end of page

Home cursor to top of page, clear text to end
of page.

APPLE IT COLORS AS SET BY COLOR =

Colors may vary depending on TV tint (hue) setting and may also
be changes by adjusting trimmer capacitor C3 on APPLE II P.C. Board.

0 = Black 8 = Brown

1 = Magnenta 9 = Orange

2 = Bark Blue 10 = Grey

3 = Light Purple 11 = Pink

4 = Dark Green 12 = Green

5 = Grey 13 = Yellow

6 = Medium Blue 14 = Blue/Green
7 = Light Blue 15 = White

29

Special Controls and Features

Hex

BASIC Example

Display Mode Controls

€050
€051
€052
€053
€054

€055
€056
€057

POKE
POKE
POKE
POKE
POKE

POKE
POKE
POKE

TEXT Mode Controls

0020

p021

po2?2

p023

po24

0025

0032

FC58
FC42

-16304,0
-16303,0
-16302,0
-16301,0
-16300,0

-16299,0
-16298,0
-16297,0

90 POKE 32,L1

100

110

120

130
140
150

160
170
180

190
200

210
220

POKE

POKE

POKE

CH=PE
POKE
TAB(C

CV=PE
POKE
VTAB(

POKE
POKE

CALL
CALL

33,W1

34,T1

35,B1

EK(36)
36, CH
H+1)

EK (37)
37,CV
CV+1)

50,127
50,255

-936
-958

Description

Set color graphics mode

Set text mode

Clear mixed graphics

Set mixed graphics (4 Tines text)

Clear display Page. 2 (BASIC commands
use Page 1 only)

Set display to Page 2 (alternate)

Clear HIRES graphics mode

Set HIRES graphics mode

Set left side of scrolling window
to location specified by L1 in
range of @ to 39.

Set window width to amount specified
by WI. LT+W1<4@. W1>0

Set window top to line specified
by T1 in range of @ to 23

Set window bottom to line specified
by B1 in the range of @ to 23. BI>T1

Read/set cusor horizontal position

in the range of @ to 39. If using

TAB, you must add "1" to cusor positior
read value; Ex. 140 and 150 perform
identical function.

Similar to above. Read/set cusor vertical
position in the range 0 to 23.

Set inverse flag if 127 (Ex. 190)

Set normal flag if 255(Ex. 200)

(@E) Home cusor, clear screen

(Fg) Clear from cusor to end of page

30

BASIC Example

230
240
250

Miscellaneous

Ca30

Co09

Co10

Co61

Co62
C263
€258
€259
CA5A
Ca58
Ca5C
Ca5D
CA5E
CA5F

360
365

370

380

390

409
419
420
430
449
450
469
479
480
499

CALL -868
CALL -922
CALL -912

X=PEEK(-16336)
POKE -16336,0

X=PEEK(-16384)

POKE -16368,0

X=PEEK(16287)

X=PEEK(-16286)
X=PEEK(-16285)
POKE -16296,0
POKE -16295,0
POKE -16294,0
POKE -16293,0
POKE -16292,0
POKE -16291,0
POKE -16290,0
POKE -16289,0

Description

(EE) Clear from cusor to end of Tine
(3%) Line feed

Scroll up text one line

Toggle speaker

Read keyboard; if X>127 then key was
pressed.

Clear keyboard strobe - always after
reading keyboard.

Read PDL(@) push button switch. If
X>127 then switch is "on".

Read PDL(1) push button switch.
Read PDL(2) push button switch.
Clear Game I/0 AN@ output

Set Game I/0 AN@ output

Clear Game I/0 AN1 output

Set Game I/0 AN1 output

Clear Game I/0 ANZ2 output

Set Game I/0 AN2 output

Clear Game I/0 AN3 output

Set Game I/0 AN3 output

31

APPLE TI BASIC ERROR MESSAGES

**% SYNTAX ERR Results from a syntactic or typing error.

**%% % 32767 ERR A value entered or calculated was Tess than
-32767 or greater than 32767.

**% > 255 ERR A value restricted to the range @ to 255 was
outside that range.

**%* BAD BRANCH ERR Results from an attempt to branch to a non-
existant 1ine number.

*** BAD RETURN ERR Results from an attempt to execute more RETURNS
than previously executed GOSUBs.

*** BAD NEXT ERR Results from an attempt to execute a NEXT state-
ment for which there was not a corresponding
FOR statement.

*** 16 GOSUBS ERR Results from more than 16 nested GOSUBs.

*** 16 FORS ERR Results from more than 16 nested FOR loops.
*** NO END ERR The Tast statement executed was not an END.
**% MEM FULL ERR The memory needed for the program has exceeded

the memory size allotted.

*** TO0 LONG ERR Results from more than 12 nested parentheses or
more than 128 characters in input line.

*** DIM ERR Results from an attempt to DIMension a string
array which has been previously dimensioned.

**%* RANGE ERR An array was larger than the DIMensioned
value or smaller than 1 or HLIN,VLIN,
PLOT, TAB, or VTAB arguments are out of
range.

**% STR OVFL ERR The number of characters assigned to a string
exceeded the DIMensioned value for that string.

**% STRING ERR Results from an attempt to execute an illegal
string operation.

RETYPE LINE Results from illegal data being typed in response

to an INPUT statement. This message also requests
that the illegal item be retyped.

32

Simplified Memory Map

o 64K Monitor and BASIC Routines in ROM

E00Q p---mn-n- - 56K Future enhancement or user supplied
; PROMS
DOOD p---------1 52K
Peripheral I/0
COOB fmmmmmmnnnd 48K::::::=' P
N R XX- — — e User specified RAM memory size
(HIMEM:)
> User workspace
LOMEM
7FF """"" 7 SCY‘een Memory
400 | o]
O Lococooo i::::::2>o Internal Workspace

33

READ/SAVE DATA SUBROUTINE

INTRODUCTION

Valuable data can be generated on the Apple II computer and sometimes
it is useful to have a software routine that will allow making a permanent
record of this information. This paper discusses a simple subroutine that
serves this purpose.

Before discussing the Read/Save routines a rudimentary knowledge of
how variables are mapped into memory is needed.

Numeric variables are mapped into memory with four attributes. Appearing
in order sequentually are the Variable Name, the Display Byte, the Next Variable
Address, and the Data of the Variable. Diagramatically this is represented as:

YN DSP NVA DATA(O) DATA(T) , DATA(N)

1 ho hp+1

VARIABLE NAME - up to 100 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to 01 when
DSP set in BASIC initiates a process
that displays this variable with the
1ine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first Tow order, the second
high order) indicating the memory
location of the next variable.

DATA - hexadecimal equivalent of

numeric information, represented

in pairs of bytes, low order byte
first.

34

String variables are formatted a bit differently than numeric ones.
These variables have one extra attribute - a string terminator which desig-
nates the end of a string. A string variable is formatted as follows:

VN DSP NVA DATA(D) DATA(T).... DATA(n) ST

1 hy h N+

VARIABLE NAME - up to 108 characters
represented in memory as ASCII equi-
valents with the high order bit set.

DSP (DISPLAY) BYTE - set to @1 when
DSP set in BASIC, initiates a process
that displays this variable with the
1ine number every time it is changed
within a program.

NVA (NEXT VARIABLE ADDRESS) - two
bytes (first low order, the second
high order) indicating the memory
location of the next variable.

DATA - ASCII equivalents with high
order bit set.

STRING TERMINATOR (ST) - none high
order bit set character indicating
END of string.

There are two parts of any BASIC program represented in memory. One is
the location of the variables used for the program, and the other is the actual
BASIC program statements. As it turns out, the mapping of these within memory
is a straightforward process. Program statements are placed into memory starting
at the top of RAM memory* unless manually shifted by the "HIMEM:."™ command, and
are pushed down as each new (numerically larger) line numbered statement is
entered into the system. Figure la illustrates this process diagramatically.
Variables on the other hand are mapped into memory starting at the Towest position
of RAM memory - hex $80@ (2048) unless manually shifted by the"LOMEM:"™ command.
They are laid down from there (see Figure 1b) and continue until all the variables
have been mapped into memory or until they collide with the program statements.
In the event of the latter case a memory full error will be generated

*Top of RAM memory is a function of the amount of memory.
16384 will be the value of "HIMEM:"™ for a 16K system.

35

The computer keeps track of the amount of memory used for the variable
table and program statements. By placing the end memory location of each into
$CC-CD(204-205) and $CA-CB(203-204), respectively. These are the BASIC
memory program pointers and their values can be found by using the statements
in Figure 2. CM defined in Figure 1 as the location of the end of the variable
tape is equal to the number resulting from statement a of Figure 2. PP, the
program pointer, is equal to the value resulting from statement 2b. These
statements(Figure 2) can then be used on any Apple II computer to find the
Timits of the program and variable table.

FINDING THE VARIABLE TABLE FROM BASIC

First, power up the Apple II, reset it, and use the CTRL B (control B)
command to place the system into BASIC initializing the memory pointers. Using
the statements from Figure 2 it is found that for a 16K Apple II CM is equal to
2048 and PP is equal to 16384. These also happen to be the values of OMEN and
HIMEN: But this is expected because upon using the Bc command both memory
pointers are initialized indicating no program statements and no variables.

To illustrate what a variable table looks 1ike in Apple II memory suppose
we want to assign the numeric variable A ($C1 is the ASCII equivalent of a with
the high order bit set) the value of -1 (FF FF in hex) and then examine the
memory contents. The steps in this process are outlined in example I. Variable A
is defined as equal to -1 (step 1). Then for convenience another variable - B -
is defined as equal to @ (step 2). Now that the variable table has been defined
use of statement 2a indicates that CM is equal to 2060 (step 3). LOMEN has not
been readjusted so it is equal to 2048. Therefore the variable table resides in
memory from 2048 ($80@ hex) to 2060 ($88C). Depressing the "RESET" key places
the Apple II into the monitor mode (step 4).

We are now ready to examine the memory contents of the variable table.
Since the variable table resides from $80@ hex to $80C hex typing in "800.80C"
and then depressing the "RETURN" key (step 5) will Tist the memory contents of
this range. Figure 3 lists the contents with each memory location labelled.
Examining these contents we see that Cl1 is equal to the variable name and is the
memory equivalent of "A" and that FF FF is the equivalent of -1. From this, since
the variable name is at the beginning of the table and the data is at the end, the
variable table representation of A extends from $800 to $805. We have then found

36

the memory range of where the variable A is mapped into memory.
The reason forthis will become clear in the next section.

READ/SAVE ROUTINE

The READ/SAVE subroutine has three parts. The first section (lines 0-10)
defines variable A and transfers control to the main program. Lines 20 through
26 represents the Write data to tape routine and Tines 30-38 represent the Read
data from tape subroutine. Both READ and SAVE routines are executable by the
BASIC "GOSUB X" (where X is 20 for write and 30 is for read) command. And as
listed these routines can be directly incorporated into almost any BASIC program
for read and saving a variable table. The limitation of these routines is that
the whole part of a variable table is processed so it is necessary to maintain
exactly the dimension statements for the variables used.

The variables used in this subroutine are defined as follows:

A= record length, must be the first variable defined
CM= the value obtained from statement a of figure 2
LM= is equal to the value of "LOMEM:"

Nominally 2048

SAVING A DATA TABLE

The first step in a hard copy routine is to place the desired data onto
tape. This is accomplished by determining the length of the variable table and
setting A equal to it. Next within the main program when it is time to write the
data a GOSUB2@ statement will execute the write to tape process. Record length,
variable A, is written to tape first (line 22) followed by the desired data
(1ine 24). When this process is completed control is returned to the main program.

READING A DATA TABLE

The second step is to read the data from tape. When it is time a GOSUB30
statement will initiate the read process. First, the record length is read in
and checked to see if enough memory is available (line 32-34). If exactly the
same dimension statements are used it is almost guaranteed that there will be
enough memory available. After this the variable table is read in (line 34) and
control is then returned to the main program (line 36). If not enough memory

is available then an error is generated and control is returned to the main pro-
gram (line 38)

37

EXAMPLE OF READ/SAVE USAGE

The Read/Save routines may be incorporated directly into a main program.
To illustrate this a test program is listed in example 2. This program dimensions
a variable array of twenty by one, fills the array with numbers, writes the data
table to tape, and then reads the data from tape listing the data on the video
display. To get a feeling for how to use these routines enter this program and
explore how the Read/Save routines work.

CONCLUSION

Reading and Saving data in the format of a variable table is a relatively
straight forward process with the Read/Save subroutine listed in figure 4. This
routine will increase the flexibility of the Apple II by providing a permanent
record of the data generated within a program. This program can be reprocessed.
The Read/Save routines are a valuable addition to any data processing program.

38

Unused
Var] Varz Varn Memory P] P2 P3 .e. Ppoo Pn-1 Ph
TLOMEN: CM End of 1\PP beginning HIMEM
$800 Variable of Max System
Table Program Size

— _ N N

a
BASIC Program

b
Variable Data

Figure 1

a) PRINT PEEK(2@4) + PEEK(2@5)*256 ~ PP
b) PRINT PEEK(2@2) + PEEK(203)*256 -~ CM

Figure 2

800 8p1 802 8@3 8P4 805 8P6 8p7 808 89 B8PA 8@B 8@C
Cl 00 @E @ﬁ FFFF C2 990 oC 98 00 00 00
L H L H

VAR DSP NVA DATA VAR DSP NVA DATA
NAM T NAM Y 1
- 1 >
Figure 3

$800.80C rewritten with Tabelling

39

READ/SAVE PROGRAM

10

20

22

24

26

30

32

34

36

38

A=

GOTO 109

PRINT "REWIND TAPE THEN
START TAPE RECORDER":
INPUT "THEN HIT RETURN",
BS

A=CM-LM: POKE 60,4:
POKE 61,8: POKE 62,5:
POKE 63,8: CALL -3@7

POKE 6@,LM MOD 256:
POKE 61, LM/256:
POKE 62, CM MOD 256:
POKE 63, CM/256:
CALL -307

PRINT "DATA TABLE SAVED":
RETURN

PRINT "REWIND THE TAPE
THEN START TAPE RECORDER":
INPUT "AND HIT RETURN",

B$

POKE 6¢,4: POKE 61,8:
POKE 62,5: POKE 63,8:
CALL -259

IF A<@ THEN 38: P=LM+A:
IF P>HM THEN 38: CM=P:
POKE 6@, LM MOD 256:

POKE 61, LM/256: POKE 62,

CM MOD 256: POKE 63, CM/256:

CALL -259

PRINT "DATA READ IN":
RETURN

PRINT "***TOO MUCH DATA
BASE***": RETURN

FIGURE 4b

COMMENTS

This must be the first statement in the
program. It is initially @, but if data
is to be saved, it will equal the length
of the data base.

This statement moves command to the main
program.

Lines 20-26 are the write data to tape
subroutine.

Writing data table to tape

Returning control to main program.

Lines 30-38 are the READ data from tape
subroutine.

Checking the record length (A) for memory

requirements if everything is satisfactory

the data is READ in.

Returning control to main program.

NOTE: CM, LM and A must be defined within the main program.

40

1 >A=1 Define variable A=-1, then hit RETURN
>

2 >B=0 Define variable B=@, then hit RETURN
>

3 >PRINT PEEK (204) + PEEK Use statement 2a to find the end of
(205) * 256 the VARIABLE TABLE
computer responds with=
2060

4 > Hit the RESET key, Apple moves into
* Monitor mode.

5 *800.80C Type in VARIABLE TABLE RANGE and HIT

the RETURN KEY.

Computer responds with:
p8op- C1 00 86 P8 FF FF C2 00
p8p8 @C 08 00 09 00

Example 1

41

Example 2

42

A SIMPLE TONE SUBROUTINE

INTRODUCTION

Computers can perform marvelous feats of mathematical computation
at well beyond the speed capable of most human minds. They are fast,
cold and accurate; man on the other hand is slower, has emotion, and makes
errors. These differences create problems when the two interact with one
another. So to reduce this problem humanizing of the computer is needed.
Humanizing means incorporating within the computer procedures that aid in
a program's usage. One such technique is the addition of a tone subroutine.
This paper discusses the incorporation and usage of a tone subroutine within
the Apple II computer.

Tone Generation

To generate tones in a computer three things are needed: a speaker,

a circuit to drive the speaker, and a means of triggering the circuit. As it
happens the Apple II computer was designed with a two-inch speaker and an
efficient speaker driving circuit. Control of the speaker is accomplished
through software.

Toggling the speaker is a simple process, a mere PEEK - 16336 ($C030)
in BASIC statement will perform this operation. This does not, however,
produce tones, it only emits clicks. Generation of tones is the goal, so
describing frequency and duration is needed, This is accomplished by toggling
the speaker at regular intervals for a fixed period of time. Figure 1 Tists
a machine language routine that satisfies these requirements.

Machine Language Program

This machine language program resides in page @ of memory from $02 (2)
to $14 (20). $00 (@B) is used to store the relative period (P) between
toggling of the speaker and $@1 (@1) is used as the memory Tocation for the
value of relative duration (@). Both P and D can range in value from $00 (@)
to $FF (255). After the values for frequency and duration are placed into
memory a CALLZ statement from BASIC will activate this routine. The speaker
is toggled with the machine language statement residing at $@2 and then a

43

delay in time equal to the value in $0@ occurs. This process is repeated until
the tone has lasted a relative period of time equal to the duration (value in $01)
and then this program is exited (statement $14).

Basic Program

The purpose of the machine language routine is to generate tones controllable
from BASIC as the program dictates. Figure 2 Tists the appropriate statement that
will deposit the machine language routine into memory. They are in the form of
a subroutine and can be activated by a GOSUB 32000 statement. It is only necessary
to use this statement once at the beginning of a program. After that the machine
Tanguage program will remain in memory unless a later part of the main program
modifies the first 2@ locations of page 0.

After the GOSUB 32000 has placed the machine language program into memory
it may be activated by the statement in Figure 3. This statement is also in the
form of a GOSUB because it can be used repetitively in a program. Once the frequency
and duration have been defined by setting P and D equal to a value between
@ and 255 a GOSUB 25 statement is used to initiate the generation of a tone. The
values of P and D are placed into $00 and $01 and the CALL2 command activates the
machine Tanguage program that toggles the speaker. After the tone has ended
control is returned to the main program.

The statements in Figures 2 and 3 can be directly incorporated into BASIC
programs to provide for the generation of tones. Once added to a program an
infinite variety of tone combinations can be produced. For example, tones can
be used to prompt, indicate an error in entering or answering questions, and
supplement video displays on the Apple II computer system.

Since the computer operates at a faster rate than man does, prompting can
be used to indicate when the computer expects data to be entered. Tones can be
generated at just about any time for any reason in a program. The programmer's
imagination can guide the placement of these tones.

CONCLUSION

The incorporation of tones through the routines discussed in this paper
will aid in the humanizing of software used in the Apple computer. These routines
can also help in transforming a dull program into a 1ively one. They are relatively
easy to use and are a valuable addition to any program.

44

FIGURE 1. Machine Language Program
adapted from a program by P. Lutas.

FIGURE 2. BASIC "POKES"

FIGURE 3. GOSUB

45

High-Resolution Operating Subroutines

These subroutines were created to make programming for
High-Resolution Graphics easier, for both BASIC and machine.
language programs. These subroutines occupy 757 bytes of memory
and are available on either cassette tape or Read-Only Memory

(ROM). This note describes use and care of these subroutines.

There are seven subroutines in this package. With these,
a programmer can initialize High-Resolution mode, clear the screen,
plot a point, draw a line, or draw and animate a predefined shape.
on the screen. There are also some other general-purpose

subroutines to shorten and simplify programming.

BASIC programs can access these subroutines by use of ,the
CALL statement, and can pass information by using the POKE state-
ment. There are special entry points for most of the subroutines
that will perform the same functions as the original subroutines
without modifying any BASIC pointers or registers. For machine
language programming, a JSR to the appropriate subroutine address

will perform the same function as a BASIC CALL.

In the following subroutine descriptions, all addresses
given will be in decimal. The hexadecimal substitutes will
be preceded by a dollar sign ($). All entry points given are
for the cassette tape subroutines, which load into addresses
COO to FFF (hex). Equivalent addresses for the ROM subroutines

will be in italic type face.

46

High-Resolution Operating Subroutines

INIT Initiates High-Resolution Graphics mode.

From BASIC: CALL 3072 (or CALL -12288)
From machine language: JSR $C00 (or JSR $D000)

This subroutine sets High-Resolution Graphics mode with a
280 x 160 matrix of dots in the top portion of the screen and
four lines of text in the bottom portion of the screen. INIT

also clears the screen.

CLEAR Clears the screen.

From BASIC: CALL 3886 (or CALL -12274)
From machine language: JSR SCOE (or JSR $L000E)

This subroutine clears the High-Resolution screen without

resetting the High-Resblution Graphics mode.

PLOT Plots a point on the screen.
From BASIC: CALL 3780 (or CALL -21589)
From machine language: JSR $C7C (or JSR $L107C)

This subroutine plots a single point on the screen. The
X and Y coodinates of the point are passed in locations 800,
801, and 802 from BASIC, or in the A, X, and Y registers from

machine language. The Y (vertical) coordinate can be from 0

47

LIEENMTT Ty 2o LW UeC

vectrors

Shqpe

_
Q=96 =
4
w J
¥¢ 5 S .\h OecpvmmgnwureTovuo w
N 9e-- e8| , ? Ol o I A M D A A AR
g L 7 00--00~2=0gq-—-00--
. <42 L 00009000~ -c-v--
e c+e .
A\ IS J
0 T o9yl ks
&<y W cvm .ew
ol v Y% £
<BFIEaTiosy | o=t g3
WY e DIDY tes ¢
J ™ « NwegqQnduryp
—=MNYN=M=919
-Q00~—~00~0 , n
Cle 0000 _==0 1—
0=Q - __=g¢ “00-=-00-—0| .
v €=—"0000==~-0| «
®-00~-00~-00 . 10 =0 ====——0
Ql-=000~- =00 ” B-00~-00-00 v
Q==~-0-0400 N VW= 00Qc==0090
- IJO-III“O‘OOO 2
o - o¢gF LooOloooooo o
0 e} 0000000000 -
(0%

TN AD

53

54

ROD'S COLOR PATTERN

PROGRAM DESCRIPTION

ROD'S COLOR PATTERN is a simple but eloquent program. It generates a
continuous flow of colored mosaic-like patterns in a 40 high by 40 wide
block matrix. Many of the patterns generated by this program are pleasing
to the eye and will dazzle the mind for minutes at a time.

REQUIREMENTS
4K or greater Apple II system with a color video display.
BASIC is the programming Tanguage used.

PROGRAM LISTING

55

PROGRAM LISTING: PONG

56

COLOR SKETCH

PROGRAM DESCRIPTION

Color Sketch is a 1ittle program that transforms the Apple II into an
artist's easel, the screen into a sketch pad. The user as an artist

has a 40 high by 40 wide (1600 blocks) sketching pad to fill with a
rainbow of fifteen colors. Placement of colors is determined by
controlling paddle inputs; one for the horizontal and the other for

the vertical. Colors are selected by depressing a letter from A through
P on the keyboard.

An enormous number of distinct pictures can be drawn on the sketch pad
and this program will provide many hours of visual entertainment.

REQUIREMENTS
This program will fit into a 4K system in the BASIC mode.

57

PROGRAM LISTING: COLOR SKETCH

58

MASTERMIND PROGRAM

PROGRAM DESCRIPTION

MASTERMIND is a game of strategy that matches your wits against Apple's.
The object of the game is to choose correctly which 5 colored bars have
been secretly chosen by the computer. Eight different colors are possible
for each bar - Red (R), Yellow (Y), Violet (V), Orange (0), White (W), and
Black (B). A color may be used more than once. Guesses for a turn are

made by selecting a color for each of the five hidden bars. After hitting
the RETURN key Apple will indicate the correctness of the turn. Each white
square to the right of your turn indicates a correctly colored and positioned
bar. Each grey square acknowledges a correctly colored but improperly posi-
tioned bar. No squares indicate you're way off.

Test your skill and challenge the Apple II to a game of MASTERMIND.
REQUIREMENTS

8K or greater Apple II computer system.
BASIC is the programming language.

59

PROGRAM LISTING: MASTERMIND

60

PROGRAM DESCRIPTION

This program plots three Biorhythm functions: Physical (P), Emotional (E),
and Mental (M) or intellectual. All three functions are plotted in the
color graphics display mode.

Biorhythm theory states that aspects of the mind run in cycles. A brief
description of the three cycles follows:

Physical

The Physical Biorhythm takes 23 days to complete and is an indirect indicator
of the physical state of the individual. It covers physical well-being, basic
bodily functions, strength, coordination, and resistance to disease.

Emotional
The Emotional Biorhythm takes 28 days to complete. It indirectly indicates
the level of sensitivity, mental health, mood, and creativity.

Mental

The mental cycle takes 33 days to complete and indirectly indicates the Tevel
of alertness, logic and analytic functions of the individual, and mental recep-
tivity.

Biorhythms

Biorhythms are thought to affect behavior. When they cross a "baseline" the
functions change phase - become unstable - and this causes Critical Days. These
days are, according to the theory, our weakest and most vulnerable times. Acci-
dents, catching colds, and bodily harm may occur on physically critical days.
Depression, quarrels, and frustration are most likely on emotionally critical
days. Finally, slowness of the mind, resistance to new situations and unclear
thinking are Tikely on mentally critical days.

REQUIREMENTS

This program fits into a 4K or greater system.
BASIC is the programming language used.

61

PROGRAM LISTING: BIORHYTHM

DRAGON MAZE PROGRAM

PROGRAM DESCRIPTION

DRAGON MAZE is a game that will test your skill and memory. A mazeis
constructed on the video screen. You watch carefully as it is completed.
After it is finished the maze is hidden as if the 1ights were turned out.
The object of the game is to get out of the maze before the dragon eats
you. A reddish-brown square indicates your position and a purple square
represents the dragon's.* You move by hitting a Tetter on the keyboard;

U for up, D for down, R for right, and L for left. As you advance so

does the dragon. The scent of humans drives the dragon crazy; when he is
enraged he breaks through walls to get at you. DRAGON MAZE is not a game
for the weak at heart. Try it if you dare to attempt out-smarting the
dragon.

REQUIREMENTS
8K or greater Apple II computer system.
BASIC is the programming language.

* Color tints may vary depending upon video monitor or television adjustments.

63

PROGRAM LISTING: DRAGON MAZE

64

DRAGON MAZE cont.

65

DRAGON MAZE cont.

66

N o o~ O

APPLE Il FIRMWARE

System Monitor Commands

Control and Editing Characters

Special Controls and Features

Annotated Monitor and Dis-assembler Listing
Binary Floating Point Package

Sweet 16 Interpreter Listing

6502 Op Codes

67

System Monitor Commands

Apple II contains a powerful machine Tevel monitor for use by the advanced
programmer. To enter the monitor either press RESET button on keyboard or
CALL-151 (Hex FF65) from Basic. Apple II will respond with an "*" (asterisk)
prompt character on the TV display. This action will not kill current BASIC
program which may be re-entered by a ¢ (control C). NOTE: "adrs" is a

four digit hexidecimal number and "data" is a two digit hexidecimal number.
Remember to press "return” button at the end of each line.

Command Format Example Description

Examine Memory

adrs *COF?2 Examines (displays) single memory
lTocation of (adrs)

adrsl.adrs? *1024.1048 Examines (displays) range of memory
from (adrsl) thru (adrs2)

(return) *(return) Examines (displays) next 8 memory
locations.
.adrs2 *.4096 Examines (displays) memory from current

location through location (adrs2)

Change Memory

adrs:data *A?256:EF 20 43 Deposits data into memory starting at
data data location (adrs).

:data data *:F@ A2 12 Deposits data into memory starting
data after (adrs) last used for deposits.

Move Memory
adrs1<adrs?2. *10P<BA1@.B410M Copy the data now in the memory range

adrs3M from (adrs2) to (adrs3) into memory
locations starting at (adrsl).

Verify Memory

adsrl<adrs? *100<BA10@.B410QV Verify that block of data in memory
adrs3V range from (adrs2) to (adrs3) exactly
matches data block starting at memory
location (adrsl)and displays
differences if any.

68

Command Format Example Description

Cassette I/0

adrsl1.adrs2R *300.4FFR Reads cassette data into specified
memory (adrs) range. Record Tength
must be same as memory range or an
error will occur.

adrsl1.adrs2W *800.9FFW Writes onto cassette data from speci-
fied memory (adrs) range.

Display
I *1 Set inverse video mode. (Black characters
on white background)
M *N Set normal video mode. (White characters

on black background)

Dis-assembler

adrsL *C800L Decodes 20 instructions starting at
memory (adrs) into 6502 assembly
nmenonic code.

L *L Decodes next 20 instructions starting
at current memory address.

Mini-assembler

(Turn-on) *F666G Turns-on mini-assembler. Prompt
character is now a "!" (exclamation
point).

$(monitor 1$C800L Executes any monitor command from mini-

command) assembler then returns control to mini-

assembler. Note that many monitor
commands change current memory address
reference so that it is good practice
to retype desired address reference
upon return to mini-assembler.

adrs: (6502 1CO1@:STA 23FF Assembles a mnemonic 65@02 instruction
MNEMONIC into machine codes. If error, machine
instruction) will refuse instruction, sound bell,
and reprint line with up arrow under
error.

69

Command Format

(space) (6502
mnemonic
instruction)

(TURN-OFF)

Monitor Program Execution and Debuging

Example

I STA @1FF

! (Reset Button)

adrsG

adrsT

asrdS

(Control E)

(Control Y)

*3006

*800T

*CP50S

*EC

Description

Assembles instruction into next
available memory location. (Note
space between "f" and instruction)

Exits mini-assembler and returns
to system monitor.

Runs machine Tevel program starting
at memory (adrs).

Traces a program starting at memory
location (adrs) and continues trace
until hitting a breakpoint. Break

occurs on instruction @@ (BRK), and
returns control to system monitor.

Opens 6502 status registers (see note 1)

Single steps through program beginning
at memory location (adrs). Type a
letter S for each additional step

that you want displayed. Opens 6502
status registers (see Note 1).

Displays 6502 status registers and
opens them for modification (see Note 1)

Executes user specified machine
language subroutine starting at
memory location (3F8).

Note 1:
6502 status registers are open if they are last line displayed on screen.
To change them type ":" then "data" for each register.
Example: A = =FF Y=00 P=32 S=F2
*: FF Changes A register only
* .

Changes A, X, and Y registers

To change S register, you must first retype data for A, X, Y and P.

Hexidecimal Arithmetic

datal+data?

datal-data?

*78+34

*AE-34

Performs hexidecimal sum of datal
plus dataZ.

Performs hexidecimal difference of
datal minus data2.

70

Command Format Example Description

Set Input/Output Ports

(X) (Control P) *5pC Sets printer output to I/0 slot
number (X). (see Note 2 below)
(X) (Control K) K C Sets keyboard input to I/0 slot

number (X). (see Note 2 below)

Note 2:

Only 81ots 1 through 7 are addressable in this mode. Address @ (Ex: @PC

or @K*) resets ports to internal video display and keyboard. These commands
will not work unless Apple II interfaces are plugged into specificed I/0
slot.

Multiple Commands

*100L 400G AFFT Multiple monitor commands may be
given on same line if separated by
a "space".

*LLLL Single letter commands may be

repeated without spaces.

71

SPECIAL CONTROL AND EDITING CHARACTERS

"Control"™ characters are indicated by a super-scripted "C" such as GC. They
are obtained by holding down the CTRL key while typing the specified letter.
Control characters are NOT displayed on the TV screen. B¢ and C® must be
followed by a carriage return. Screen editing characters are indicated by a
sub-scripted "E" such as Dp. They are obtained by pressing and releasing the
ESC key then typing specified letter. Edit characters send information only
to display screen and does not send data to memory. For example, U moves to
cursor to right and copies text while Ap moves cursor to right but does not
copy text.

CHARACTER DESCRIPTION OF ACTION

RESET key Immediately interrupts any program execution and resets
computer. Also sets all text mode with scrolling window
at maximum. Control is transferred to System Monitor and
Apple prompts with a "*" (asterisk) and a bell. Hitting
RESET key does NOT destroy existing BASIC or machine
language program.

Control B If in System Monitor (as indicated by a "*"), a control
B and a carriage return will transfer control to BASIC,
scratching (killing) any existing BASIC program and set
HIMEM: to maximum installed user memory and LOMEM:
to 2048.

Control C If in BASIC, halts program and displays line number
where stop occurred*. Program may be continued with a
CON command. If in System Monitor, (as indicated by "*"),
control C and a carriage return will enter BASIC without
killing current program.

Control G Sounds bell (beeps speaker)

Control H Backspaces cursor and deletes any overwritten characters
from computer but not from screen. Apply supplied
keyboards have special key "4-." on right side of keyboard
that provides this functions without using control button.

Control J Issues T1ine feed only

Control V Compliment to HC. Forward spaces cursor and copies over
written characters. Apple keyboards have "+" key on
right side which also performs this function.

Control X Immediately deletes current line.

= If BASIC program is expecting keyboard input, you will have
to hit carriage return key after typing control C.

72

SPECIAL CONTROL AND EDITING CHARACTERS

(continued)
CHARACTER DESCRIPTION OF ACTION
Ag Move cursor to right
Be Move cursor to left
Ce Move cursor down
De Move cursor up
Ee Clear text from cursor to end of line
FE Clear text from cursor to end of page
@ Home cursor to top of page, clear text to end
of page.

73

Special Controls and Features

Hex BASIC Example Description

Display Mode Controls

C050 10 POKE -16304,0 Set color graphics mode

C051 20 POKE -16303,0 Set text mode

€052 30 POKE -16302,0 Clear mixed graphics

€053 40 POKE -16301,0 Set mixed graphics (4 lines text)

C054 50 POKE -16300,0 Clear display Page 2 (BASIC commands
use Page 1 only)

€055 60 POKE -16299,0 Set display to Page 2 (alternate)

C056 70 POKE -16298,0 Clear HIRES graphics mode

€057 80 POKE -16297,0 Set HIRES graphics mode

TEXT Mode Controls

0020 90 POKE 32,L1 Set left side of scrolling window
to location specified by L1 in
range of @ to 39.

po21 100 POKE 33,W1 Set window width to amount specified
by W1. LT1+W1<4@. W1>Q
P22 110 POKE 34,T1 Set window top to Tline specified
by T1 in range of @ to 23
P23 120 POKE 35,Bl1 Set window bottom to Tine specified
by B1 in the range of @ to 23. BI>T1
po24 130 CH=PEEK(36) Read/set cusor horizontal position
149 POKE 36,CH in the range of @ to 39. 1If using
150 TAB(CH+1) TAB, you must add "1" to cusor position

read value; Ex. 140 and 150 perform
identical function.

0025 160 CV=PEEK(37) Similar to above. Read/set cusor
1790 POKE 37,CV vertical position in the range 9 to
180 VTAB(CV+1) 23.

PR32 190 POKE 5@,127 Set inverse flag if 127 (Ex. 190)
200 POKE 5@,255 Set normal flag if 255(Ex. 200)

FC58 210 CALL -936 (@) Home cusor, clear screen

FC42 220 CALL -958 (Fg) Clear from cusor to end of page

74

BASIC Example

230
240
250

Miscellaneous

Ca30

Co09

Co10

Co61

Co62
C263
€258
€259
CA5A
Ca58
Ca5C
Ca5D
CA5E
CA5F

360
365

370

380

390

409
419
420
430
449
450
469
479
480
499

CALL -868
CALL -922
CALL -912

X=PEEK(-16336)
POKE -16336,0

X=PEEK(-16384

POKE -16368,0

X=PEEK(16287)

X=PEEK(-16286)
X=PEEK(-16285
POKE -16296,0
POKE -16295,0
POKE -16294,0
POKE -16293,0
POKE -16292,0
POKE -16291,0
POKE -16290,0
POKE -16289,0

Description

(EE) Clear from cusor to end of Tine
(3%) Line feed

Scroll up text one line

Toggle speaker

Read keyboard; if X>127 then key was
pressed.

Clear keyboard strobe - always after
reading keyboard.

Read PDL(@) push button switch. If
X>127 then switch is "on".

Read PDL(1) push button switch.
Read PDL(2) push button switch.
Clear Game I/0 AN@ output

Set Game I/0 AN@ output

Clear Game I/0 AN1 output

Set Game I/0 AN1 output

Clear Game I/0 ANZ2 output

Set Game I/0 AN2 output

Clear Game I/0 AN3 output

Set Game I/0 AN3 output

75

khkhkhkkhhkhkhkhkdhdkdxdkdddhxdkdrddxdxdxkx

* *
* APPLE II *
* SYSTEM MONITOR *
* *
* COPYRIGHT 1977 BY *
* APPLE COMPUTER, INC. *
* *
* ALL RIGHTS RESERVED *
* *
* S. WOZNIAK *
* A. BAUM *
* *
khkhkhkkhhkkhkhhkdhdkdxdkdhddxdkdrddxdxdxx
TITLE "APPLE II SYSTEM MONITOR"
L0Co EPZ $00
Locl EPZ $01
WNDLFT EPZ $20
WNDWDTH EPZ $21
WNDTOP EPZ $22
WNDBTM EPZ $23
CH EPZ $24
cv EPZ $25
GBASL EPZ $26
GBASH EPZ $27
BAST, EPZ $28
BASH EPZ $29
BAS2L EPZ $2A
BAS2H EPZ $2B
H2 EPZ $2C
LMNEM EPZ $2C
RTNL EPZ $2C
\ EPZ $2D
RMNEM EPZ $2D
RTNH EPZ $2D
MASK EPZ $2E
CHKSUM EPZ $2E
FORMAT EPZ $2E
LASTIN EPZ $2F
LENGTH EPZ $2F
SIGN EPZ $2F
COLOR EPZ $30
MODE EPZ $31
INVFLG EPZ $32
PROMPT EPZ $33
YSAV EPZ $34
YSAV1 EPZ $35
CSWL EPZ $36
CSWH EPZ $37
KSWL EPZ $38
KSWH EPZ $39
PCL EPZ $3A
PCH EPZ $3B
XQT EPZ $3C
AlL EPZ $3C
AlH EPZ $3D
A2L EPZ $3E
A2H EPZ $3F
A3L EPZ $40
A3H EPZ $41
A4T, EPZ $42
A4H EPZ $43
A5L EPZ $44
ASH EPZ $45

76

F800:
F801:
F802:
F805:
F806:
F808:
F80A:
F80C:
F80E:
F810:
F81l2:
F81l4:
F816:
F818:
F819:
F81C:
F81lE:
F820:
F821:
F824:
F826:
F828:
F829:
F82C:
F82D:
F82F:
F831:
F832:
F834:
F836:
F838:

F83A:
F83C:
F83E:
F840:
F843:
F844:
F846:
F847:
F848:
F849:
F84B:
F84D:
F84F:
F850:
F852:
F854:
F856:

F8

F8

F8

F8

ACC
XREG
YREG
STATUS
SPNT
RNDL
RNDH
ACL
ACH
XTNDL
XTNDH
AUXL
AUXH
PICK
IN
USRADR
NMI
IRQLOC
IOADR
KBD
KBDSTRB
TAPEOUT
SPKR
TXTCLR
TXTSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
TAPEIN
PADDLO
PTRIG
BASIC
BASIC2

PLOT

RTMASK
PLOT1

HLINE
HLINE1l

VLINEZ
VLINE

RTS1
CLRSCR

CLRTOP
CLRSC2

*

CLRSC3

GBASCALC

GBCALC

EQU $45
EQU $46
EQU $47
EQU $48
EQU $49
EQU S4E
EQU S$4F
EQU $50
EQU $51
EQU $52
EQU $53
EQU $54
EQU $55
EQU $95
EQU $0200
EQU S03F8
EQU SO03FB
EQU SO3FE
EQU $C000
EQU $C000
EQU $C010
EQU $C020
EQU $C030
EQU $C050
EQU $C051
EQU $C052
EQU $C053
EQU $C054
EQU $C055
EQU $C056
EQU $C057
EQU $C060
EQU $C064
EQU $C070
EQU SE000
EQU SE003
ORG SF800
LSR A
PHP
JSR GBASCALC
PLP
LDA #SOF
BCC RTMASK
ADC #SEO
STA MASK
LDA (GBASL) ,Y
EOR COLOR
AND MASK
EOR (GBASL) ,Y
STA (GBASL) ,Y
RTS

JSR PLOT
CPY H2

BCS RTS1
INY

JSR PLOT1
BCC HLINE1
ADC #$01
PHA

JSR PLOT
PLA

CMP v2

BCC VLINEZ
RTS

LDY #S2F
BNE CLRSC2
LDY #$27
STY v2

FOR VLINE CALLS
LDY #$27
LDA #$00
STA COLOR
JSR VLINE
DEY

BPL CLRSC3
RTS

PHA

LSR A
AND #$03
ORA #$04
STA GBASH
PLA
AND #s18
BCC GBCALC
ADC #STF
STA GBASL

77

ROM START ADDRESS
Y-COORD/2

SAVE LSB IN CARRY

CALC BASE ADR IN GBASL,H
RESTORE LSB FROM CARRY
MASK $0F IF EVEN

MASK $F0 IF ODD

DATA

EOR COLOR

AND MASK
XOR DATA
TO DATA

PLOT SQUARE

DONE?

YES, RETURN

NO, INCR INDEX (X-COORD)
PLOT NEXT SQUARE

ALWAYS TAKEN

NEXT Y-COORD

SAVE ON STACK

PLOT SQUARE

DONE?
NO, LOOP.

MAX Y, FULL SCRN CLR
ALWAYS TAKEN

MAX Y, TOP SCREEN CLR
STORE AS BOTTOM COORD

RIGHTMOST X-COORD (COLUMN)
TOP COORD FOR VLINE CALLS
CLEAR COLOR (BLACK)

DRAW VLINE

NEXT LEFTMOST X-COORD
LOOP UNTIL DONE.

FOR INPUT OOODEFGH

GENERATE GBASH=000001FG

AND GBASL=HDEDEO0O0O

F858:
F859:
F85A:
F85C:
F85E:
F85F:
F861:
F862:
F864:
F866:
F868:
F869:
F86A:
F86B:
F86C:
FB86E:
F870:
F871:
F872:
F873:
F876:
F878:
F879:
F87B:
F87C:
F87D:
F87E:
F87F:
F881l:
F882:
F884:
F886:
F889:
F88C:
F88E:
F88F:
F890:
F892:
F893:
F895:
F897:
F899:
F89B:
F89C:
F89D:
F8AOQ:
F8A3:
F8A5:
F8A7:
F8A9:
F8AA:
F8AD:
F8AF:

F8Bl:
F8B3:
F8B4:
F8B6:
F8B7:
F8B8:
F8BA:
F8BC:
F8BE:
F8BF:
F8Cl:
F8C2:
F8C3:
F8C5:
F8C6:
F8C8:
F8C9:
F8CA:
F8CC:
F8CD:
F8DO0:
F8D3:
F8D4:
F8D6:
F8D9:
F8DB:
F8DE:
FB8EO:
FB8El:
FB8E3:
FB8E5:

30

47
26

04

03

0B

08

20

FA

F2

F8

FD
F9

F9

F9

FF
F8

FD

F9

NXTCOL

SETCOL

SCRN

SCRN2

RTMSKZ

INSDS1

INSDS2

IEVEN

ERR

GETFMT

MNNDX1

MNNDX2

MNNDX3

INSTDSP

PRNTOP

PRNTBL

ASL
ASL
ORA
STA
RTS
LDA
CLC
ADC
AND
STA
ASL
ASL
ASL
ASL
ORA
STA
RTS
LSR
PHP
JSR
LDA
PLP
BCC
LSR
LSR
LSR
LSR
AND
RTS
LDX
LDY
JSR
JSR
LDA
TAY
LSR
BCC
ROR
BCS
CMP
BEQ
AND
LSR
TAX
LDA
JSR
BNE
LDY
LDA
TAX
LDA
STA
AND

STA
TYA
AND
TAX
TYA
LDY
CPX
BEQ
LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
JSR
PHA
LDA
JSR
LDX
JSR
CPY
INY
BCC
LDX
CPY

COLOR INCREMENT COLOR BY 3

#SO0F SETS COLOR=17*A MOD 16

A BOTH HALF BYTES OF COLOR EQUAL

A READ SCREEN Y-COORD/2
SAVE LSB (CARRY)
GBASCALC CALC BASE ADDRESS
(GBASL) ,Y GET BYTE
RESTORE LSB FROM CARRY
RTMSKZ IF EVEN, USE LO H
A
A
A SHIFT HIGH HALF BYTE DOWN
A
#SO0F MASK 4BITS

PCL PRINT PCL,H

PCH

PRYX2

PRBLNK FOLLOWED BY A BLANK
(PCL,X) GET OP CODE

A EVEN/ODD TEST
IEVEN
BIT 1 TEST
ERR XXXXXX11l INVALID OP
#SA2
ERR OPCODE $89 INVALID
#$87 MASK BITS
A LSB INTO CARRY FOR L/R TEST
FMTL1, X GET FORMAT INDEX BYTE
SCRN2 R/L HBYTE ON CARRY
GETFMT
#$80 SUBSTITUTE $80 FOR INVALID OPS
#$00 SET PRINT FORMAT INDEX TO O

FMT2,X INDEX INTO PRINT FORMAT TABLE
FORMAT SAVE FOR ADR FIELD FORMATTING

#$03 MASK FOR 2BIT LENGTH
(P=1 BYTE, 1=2 BYTE, 2=3 BYTE)
LENGTH
OPCODE
#$8F MASK FOR 1XXX1010 TEST
SAVE IT
OPCODE TO A AGAIN
#503
#$8A
MNNDX 3
A

MNNDX 3 FORM INDEX INTO MNEMONIC TABLE
A

A 1) 1XXX1010=>00101XXX

#$20 2) XXXYYY01=>00111XXX
3) XXXYYY10=>00110XXX

MNNDX2 4) XXXYY100=>00100XXX

5) XXXXX000=>000XXXXX
MNNDX1

$FF,$FF, $FF
INSDS1 GEN FMT, LEN BYTES
SAVE MNEMONIC TABLE INDEX
(PCL), Y
PRBYTE
#$01 PRINT 2 BLANKS
PRBL2
LENGTH PRINT INST (13 BYTES)
IN A 12 CHR FIELD
PRNTOP
#$03 CHAR COUNT FOR MNEMONIC PRINT
#$04

78

FB8E7:
FB8E9:
F8EA:
F8EB:
F8EE:
F8FO0:
F8F3:
F8F5:
F8F7:
F8F9:
F8FB:
F8FD:
F8FE:
F8FF:
F901l:
F903:
F906:
F907:
F909:
F90C:
FI90E:
F910:
F912:
F914:
F916:
F918:
FI91B:
FI91lE:
F921:
F923:
F926:
F927:
F929:
F92A:
F92B:
F92D:
F930:
F932:
F934:
F936:
F938:
F93B:
F93C:
F93D:
FI93F:
F940:
F941:
F944:
F945:
F948:
F94A:
F94cC:
FI94F:
F950:
F952:
F953:
F954:
F956:
F958:
F959:
F95B:
F95C:
FI95E:
F960:
F961:

F962:
F965:
F967:
F96A:
F96C:
F96F:
F971:
F974:
F976:
F979:
F97B:
F97E:
F980:
F983:
F985:
F988:

2F
3B

01

3A

F9

FA

FD

F9

F9

F9

FD

FD

F9

FD

FD

FD

54

90

0D

20

04

3B

00

Cc8

PRMN1

PRMN2

PRADR1

PRADR2

PRADR3

PRADR4

PRADR5

RELADR

PRNTYX
PRNTAX
PRNTX

PRBLNK

PRBL2
PRBL3

PCADJ
PCADJ2
PCADJ3

PCADJ4

RTS2

* * *

FMT1

BCC PRNTBL
PLA RECOVER MNEMONIC INDEX
TAY

LDA MNEML,Y

STA LMNEM FETCH 3-CHAR MNEMONIC

LDA MNEMR,Y (PACKED IN 2-BYTES)
STA RMNEM

LDA #3500

LDY #$05

ASL. RMNEM SHIFT 5 BITS OF

ROL LMNEM CHARACTER INTO A

ROL (CLEARS CARRY)

DEY

BNE PRMN2

ADC #$BF ADD "?" OFFSET

JSR COUT OUTPUT A CHAR OF MNEM
DEX

BNE PRMN1

JSR PRBLNK OUTPUT 3 BLANKS

LDY LENGTH

LDX #3506 CNT FOR 6 FORMAT BITS
CPX #$03

BEQ PRADR5 IF X=3 THEN ADDR.

ASL. FORMAT

BCC PRADR3

LDA CHAR1-1,X

JSR COUT

LDA CHAR2-1,X

BEQ PRADR3

JSR COUT

DEX

BNE PRADRL

RTS

DEY

BMI PRADR2

JSR PRBYTE

LDA FORMAT

CMP #$E8 HANDLE REL ADR MODE

LDA (PCL),Y SPECIAL (PRINT TARGET,
BCC PRADR4 NOT OFFSET)

JSR PCADJ3

TAX PCL,PCH+OFFSET+1 TO A,Y
INX

BNE PRNTYX +1 TO Y,X

INY

TYA

JSR PRBYTE OUTPUT TARGET ADR

TXA OF BRANCH AND RETURN
JMP PRBYTE

LDX #$03 BLANK COUNT

LDA #S$A0 LOAD A SPACE

JSR COUT OUTPUT A BLANK

DEX

BNE PRBL2 LOOP UNTIL COUNT=0

RTS

SEC 0=1-BYTE, 1=2-BYTE

LDA LENGTH 2=3-BYTE

LDY PCH

TAX TEST DISPLACEMENT SIGN
BPL PCADJ4 (FOR REL BRANCH)

DEY EXTEND NEG BY DEC PCH

ADC PCL

BCC RTS2 PCL+LENGTH(OR DISPL)+1 TO A
INY CARRY INTO Y (PCH)

RTS
FMT1 BYTES: XXXXXXY0 INSTRS
IF Y=0 THEN LEFT HALF BYTE
IF Y=1 THEN RIGHT HALF BYTE

(X=INDEX)

DFB $04,$20,$54,$30,$0D

DFB $80,$04,$90,$03,$22

DFB $54,$33,$0D,$80,$04

DFB $90,$04,$20,$54,$33

DFB $0D,$80,$04,$90,$04

DFB $20,$54,$3B,$0D,$80

DFB $04,$90,$00,$22,$44

DFB $33,$0D,$C8,$44,5$00

79

F98A: 11 22 44

F98D: 33 0D DFB $11,$22,$44,$33,$0D
F98F: C8 44 A9

F992: 01 22 DFB $C8,$44,$A9,$01,$22
F994: 44 33 0D

F997: 80 04 DFB $44,$33,$0D,$80,$04
F999: 90 01 22

F99C: 44 33 DFB $90,$01,$22,$44,$33
F99E: 0D 80 04

F9Al: 90 DFB $0D,$80,$04,$90
F9A2: 26 31 87

F9A5: 9A DFB $26,$31,$87,$9A $ZZXXXY0l INSTR'S
F9A6: 00 FMT2 DFB $00 ERR

F9A7: 21 DFB $21 IMM

F9A8: 81 DFB $81 %-PAGE
F9A9: 82 DFB $82 ABS

F9AA: 00 DFB $00 IMPLIED
F9AB: 00 DFB $00 ACCUMULATOR
F9AC: 59 DFB $59 (ZPAG, X)
F9AD: 4D DFB $4D (ZPAG),Y
F9AE: 91 DFB $91 ZPAG, X
F9AF: 92 DFB $92 ABS, X
F9BO: 86 DFB $86 ABS, Y
F9Bl: 4A DFB $4A (ABS)
F9B2: 85 DFB $85 ZPAG, Y
F9B3: 9D DFB $9D RELATIVE

F9B4: AC A9 AC
F9B7: A3 A8 A4

CHARL ASC ") HE(S"
F9BA: D9 00 D8
F9BD: A4 A4 00 CHAR2 DFB $D9,$00,$D8,$A4,3$A4,$00

*CHAR2: "Y",0,"Xs",0

* MNEML IS OF FORM:

* (A) XXXXX000

* (B) XXXYY100

* (C) 1xXxX1010

* (D) XXXYYY10

* (E) XXXYYY0l

* (X=INDEX)
F9C0: 1C 8A 1C
F9C3: 23 5D 8B MNEML DFB $1Cc,s$8A,$1C,$23,$5D,$
F9C6: 1B Al 9D
F9C9: 8A 1D 23 DFB $1B,$Al,$9D,$8A,$1D,$23
F9CC: 9D 8B 1D
F9CF: Al 00 29 DFB $9D,$8B,$1D,$A1,$00,$29
F9D2: 19 AE 69
F9D5: A8 19 23 DFB $19,SAE,$69,$A8,5$19,$23
F9D8: 24 53 1B
F9DB: 23 24 53 DFB $24,$53,$1B,$23,$24,$53
F9DE: 19 Al DFB $19,sA1 (A) FORMAT ABOVE
F9EO: 00 1A 5B
F9E3: 5B A5 69 DFB $00,$1A,$5B,$5B,S$A5,$69
F9E6: 24 24 DFB $24,$24 (B) FORMAT
F9E8: AE AE A8
F9EB: AD 29 00 DFB SAE, SAE, $A8,$AD,$29,$00
F9EE: 7C 00 DFB $7C,$00 (C) FORMAT
F9F0: 15 9C 6D
F9F3: 9C A5 69 DFB $15,$9C,$6D,$9C,$A5,5$69
F9F6: 29 53 DFB $29,$53 (D) FORMAT
F9F8: 84 13 34
F9FB: 11 A5 69 DFB $84,$13,$34,$11,3A5,$69
F9FE: 23 A0 DFB $23,$A0 (E) FORMAT

FAO0O: D8 62 5A
FAO03: 48 26 62 MNEMR DFB $D8,$62,$5A,548,$26,$62
FAO6: 94 88 54

FA09: 44 C8 54 DFB $94,$88,$54,$44,$C8,$54
FAOC: 68 44 ES8

FAOF: 94 00 B4 DFB $68,$44,$E8,$94,$00,$B4
FAl2: 08 84 74

FAl5: B4 28 6E DFB $08,$84,$74,$B4,$28,$6E
FAl18: 74 F4 CC

FAl1B: 4A 72 F2 DFB $74,$F4,$CC,$4A,$72,$F2
FAlE: A4 8A DFB SA4,$8A (A) FORMAT
FA20: 00 AA A2

FA23: A2 74 74 DFB $00,$AA,$A2,$A2,$74,$74
FA26: 74 72 DFB $74,872 (B) FORMAT
FA28: 44 68 B2

FA2B: 32 B2 00 DFB $44,$68,$B2,$32,$B2,$00
FA2E: 22 00 DFB $22,$00 (C) FORMAT
FA30: 1A 1A 26

FA33: 26 72 72 DFB $1A,$1A,$26,$26,$72,$72
FA36: 88 C8 DFB $88,$C8 (D) FORMAT
FA38: C4 CA 26

FA3B: 48 44 44 DFB $C4,$CA,$26,$48,%44,%44
FA3E: A2 C8 DFB $SA2,$C8 (E) FORMAT

80

FA40:
FA43:
FA46:
FA47:
FA49:
FA4A:
FA4C:
FA4E:
FAS51:
FA53:
FA54:
FA56:
FA58:
FAS5A:
FA5C:
FASE:
FA60:
FA62:
FA64:
FA66:
FA68:
FAG6A:
FA6C:
FAG6E:
FA70:
FA72:
FA74:
FA76:
FA78:
FATA:
FA7TD:
FATE:
FA80:
FA83:
FA86:
FA88:
FA89:
FAB8A:
FA8B:
FA8C:
FA8D:
FA8F:
FA92:
FA93:
FA96:
FA97:
FA99:
FA9A:
FA9C:
FA9F:
FAA2:
FAAS:
FAAG6:
FAAT7:
FAA9:
FAAA:
FAAC:
FAAD:
FAAF:
FABL:
FAB4:
FABG6:
FAB7:
FAB9:
FABA:
FABD:
FABE:
FABF:
FACO:
FAC1:
FAC2:
FAC4:
FACS5:
FAC7:
FACS8:
FACO:
FACB:
FACD:
FACF:
FAD1:
FAD3:
FAD4:
FADG6:
FAD7:
FADA:
FADC:

FF
DO

2C

03
FE

4C

3A

FF
F8

FB

00

FF
00

03

FF

F8
FA
FF

F9

F9

FD

STEP

XQINIT

X0l
XQ2

IRQ

BREAK

XBRK

XRTI

XRTS

PCINC2

PCINC3

XJSR

XJMP
XJMPAT

NEWPCL

RTNJMP

REGDSP
RGDSP1

DFB
JSR
PLA
STA
PLA
STA
LDX
LDA
STA
DEX
BNE
LDA
BEQ
LDY
CMP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
AND
EOR
CMP
BEQ
LDA
STA
DEY
BPL
JSR
JMP
STA
PLA
PHA
ASL
ASL
ASL
BMI
JMP
PLP
JSR
PLA
STA
PLA
STA
JSR
JSR
JMP
CLC
PLA
STA
PLA
STA
PLA
STA
LDA
JSR
STY
CLC
BCC
CLC
JSR
TAX
TYA
PHA
TXA
PHA
LDY
CLC
LDA
TAX
DEY
LDA
STX
STA
BCS
LDA
PHA
LDA
PHA
JSR
LDA
STA

$FF,$FF, $FF

INSTDSP DISASSEMBLE ONE INST
AT (PCL,H)
RTNL ADJUST TO USER
STACK. SAVE
RTNH RTN ADR.
#$08
INITBL-1,X INIT XEQ AREA
XQT, X
XQINIT
(PCL,X) USER OPCODE BYTE
XBRK SPECIAL IF BREAK
LENGTH LEN FROM DISASSEMBLY
#$20
XJSR HANDLE JSR, RTS, JMP,
#$60 JMP (), RTI SPECIAL
XRTS
#s4cC
XJIMP
#$6C
XJMPAT
#$40
XRTI
#$1F
#s14
#$04 COPY USER INST TO XEQ AREA
XQ2 WITH TRAILING NOPS
(PCL),Y CHANGE REL BRANCH
XQT,Y DISP TO 4 FOR
JMP TO BRANCH OR
X01 NBRANCH FROM XEQ.
RESTORE RESTORE USER REG CONTENTS.
XQT XEQ USER OP FROM RAM
ACC (RETURN TO NBRANCH)
**IRQ HANDLER
A
A
A
BREAK TEST FOR BREAK

(IRQLOC) USER ROUTINE VECTOR IN RAM

SAV1 SAVE REG'S ON BREAK
INCLUDING PC
PCL
PCH
INSDS1 PRINT USER PC.
RGDSP1 AND REG'S
MON GO TO MONITOR
SIMULATE RTI BY EXPECTING
STATUS STATUS FROM STACK, THEN RTS
RTS SIMULATION
PCL EXTRACT PC FROM STACK
AND UPDATE PC BY 1 (LEN=0)
PCH
LENGTH UPDATE PC BY LEN
PCADJ3
PCH
NEWPCL
PCADJ2 UPDATE PC AND PUSH
ONTO STACH FOR
JSR SIMULATE
#$02
(PCL), Y
LOAD PC FOR JMP,
(JMP) SIMULATE.
(PCL), Y
PCH
PCL
XJMP
RTNH
RTNL
CROUT DISPLAY USER REG
#ACC CONTENTS WITH
A3L LABELS

81

FADE: A9 00 LDA #ACC/256

FAEO: 85 41 STA A3H

FAE2: A2 FB LDX #SFB

FAE4: A9 A0 RDSP1 LDA #SA0

FAE6: 20 ED FD JSR CouT

FAE9: BD 1E FA LDA RTBL-$FB, X

FAEC: 20 ED FD JSR CouT

FAEF: A9 BD LDA #S$BD

FAFl: 20 ED FD JSR CouT

FAF4: B5 4A LDA ACC+5,X

FAF6: 20 DA FD JSR PRBYTE

FAF9: ES8 INX

FAFA: 30 ES8 BMI RDSP1

FAFC: 60 RTS

FAFD: 18 BRANCH CLC BRANCH TAKEN,
FAFE: A0 01 LDY #S01 ADD LEN+2 TO PC
FB00: Bl 3A LDA (PCL),Y

FB02: 20 56 F9 JSR PCADJ3

FB05: 85 3A STA PCL

FB07: 98 TYA

FB08: 38 SEC

FB09: BO A2 BCS PCINC2

FBOB: 20 4A FF NBRNCH JSR SAVE NORMAL RETURN AFTER
FBOE: 38 SEC XEQ USER OF
FBOF: BO 9E BCS PCINC3 GO UPDATE PC
FBll: EA INITBL NOP

FB12: EA NOP DUMMY FILL FOR
FB13: 4C 0B FB JMP NBRNCH XEQ AREA

FB16: 4C FD FA JMP BRANCH

FB19: Cl RTBL DFB s$cl

FB1lA: D8 DFB $D8

FB1B: D9 DFB $D9

FB1C: DO DFB $DO

FB1D: D3 DFB $D3

FBlE: AD 70 CO PREAD LDA PTRIG TRIGGER PADDLES
FB21: A0 00 LDY #$00 INIT COUNT

FB23: EA NOP COMPENSATE FOR 1ST COUNT
FB24: EA NOP

FB25: BD 64 CO PREAD2 LDA PADDLO, X COUNT Y-REG EVERY
FB28: 10 04 BPL RTS2D 12 USEC

FB2A: C8 INY

FB2B: DO F8 BNE PREAD2 EXIT AT 255 MAX
FB2D: 88 DEY

FB2E: 60 RTS2D RTS

FB2F: A9 00 INIT LDA #$00 CLR STATUS FOR DEBUG
FB31l: 85 48 STA STATUS SOFTWARE

FB33: AD 56 CO LDA LORES

FB36: AD 54 CO LDA LOWSCR INIT VIDEO MODE
FB39: AD 51 CO SETTXT LDA TXTSET SET FOR TEXT MODE
FB3C: A9 00 LDA #$00 FULL SCREEN WINDOW
FB3E: FO 0B BEQ SETWND

FB40: AD 50 CO SETGR LDA TXTCLR SET FOR GRAPHICS MODE
FB43: AD 53 CO LDA MIXSET LOWER 4 LINES AS
FB46: 20 36 F8 JSR CLRTOP TEXT WINDOW
FB49: A9 14 LDA #$14

FB4B: 85 22 SETWND STA WNDTOP SET FOR 40 COL WINDOW
FB4D: A9 00 LDA #$00 TOP IN A-REG,
FB4F: 85 20 STA WNDLFT BTTM AT LINE 24
FB51: A9 28 LDA #$28

FB53: 85 21 STA WNDWDTH

FB55: A9 18 LDA #s18

FB57: 85 23 STA WNDBTM VTAB TO ROW 23
FB59: A9 17 LDA #$17

FB5B: 85 25 TABV STA cv VTABS TO ROW IN A-REG
FB5D: 4C 22 FC JMP VTAB

FB60: 20 A4 FB MULPM JSR MD1 ABS VAL OF AC AUX
FB63: A0 10 MUL LDY #$10 INDEX FOR 16 BITS
FB65: A5 50 MUL2 LDA ACL ACX * AUX + XTND
FB67: 4A LSR A TO AC, XTND
FB68: 90 0C BCC MUL4 IF NO CARRY,
FB6A: 18 CLC NO PARTIAL PROD.
FB6B: A2 FE LDX #SFE

FB6D: B5 54 MUL3 LDA XTNDL+2,X ADD MPLCND (AUX)
FB6F: 75 56 ADC AUXL+2,X TO PARTIAL PROD
FB71: 95 54 STA XTNDL+2, X (XTND)

FB73: ES8 INX

FB74: DO F7 BNE MUL3

FB76: A2 03 MUL4 LDX #503

FB78: 76 MUL5 DFB $76

FB79: 50 DFB $50

FB7A: CA DEX

FB7B: 10 FB BPL MUL5

FB7D: 88 DEY

FB7E: DO E5 BNE MUL2

FB80: 60 RTS

82

FB81:
FB84:
FB86:
FB88:
FB8A:
FB8C:
FB8E:
FB8F:
FB91:
FB93:
FB94:
FB96:
FB98:
FB9A:
FB9C:
FB9E:
FBAO:
FBAl:
FBA3:
FBA4:
FBAG6:
FBAS:
FBAA:
FBAD:
FBAF:
FBB1l:
FBB3:
FBB4:
FBB5:
FBB7:
FBB9:
FBBA:
FBBC:
FBBE:
FBCO:
FBCl:
FBC2:
FBC3:
FBC5:
FBC7:
FBCY:
FBCA:
FBCC:
FBCE:
FBDO:
FBD2:
FBD3:
FBD4:
FBD6:
FBDS8:
FBD9:
FBDB:
FBDD:
FBDF:
FBE2:
FBE4:
FBEG6:
FBE9:
FBEC:
FBED:
FBEF:
FBFO:
FBF2:
FBF4:
FBF6:
FBF8:
FBFA:
FBFC:
FBFD:
FBFF:
FCO1l:
FC02:
FCO04:
FCO06:
FCO08:
FCOA:
FCOC:
FCOE:
FC1l0:
FCl2:
FCl4:
FClé6:
FC1l8:
FClA:
FClC:

A4
10
50
51
52
53

52
54

00
00

01

2F

FB

FB

FC

FC

DIVPM
DIV
DIV2

DIV3

MD1

MD3

MDRTS
BASCALC

BSCLC2

BELL1

BELL2

RTS2B
STOADV

ADVANCE

RTS3
VIDOUT

BS

UP

JSR
LDY
ASL
ROL
ROL
ROL
SEC
LDA
SBC
TAX
LDA
SBC
BCC
STX
STA
INC
DEY
BNE
RTS
LDY
STY
LDX
JSR
LDX
LDA
BPL
SEC
TYA
SBC
STA
TYA
SBC
STA
INC
RTS
PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
CMP
BNE
LDA
JSR
LDY
LDA
JSR
LDA
DEY
BNE
RTS
LDY
STA
INC
LDA
CMP
BCS
RTS
CcMP
BCS
TAY
BPL
CMP
BEQ
CMP
BEQ
CMP
BNE
DEC
BPL
LDA
STA
DEC
LDA
CcMP

MD1
#$10
ACL
ACH
XTNDL
XTNDH

XTNDL
AUXL

XTNDH
AUXH
DIV3
XTNDL
XTNDH
ACL

DIV2

#$00
SIGN
#AUXL
MD3
#ACL
LOC1,X
MDRTS

LOCO,X
LOCO,X

LOCIL,X
LOCIL,X
SIGN

A
#$03
#$04
BASH

#s18
BSCLC2
#STF
BASL

BASL
BASL

#$87
RTS2B
#$40
WAIT
#$CO
#s$0C
WAIT
SPKR

BELL2

CH
(BASL),Y
CH

CH
WNDWDTH
CR

#$A0
STOADV

STOADV
#$8D

CR

#$8A

LF

#$88
BELL1
CH

RTS3
WNDWDTH

ABS VAL OF AC, AUX.
INDEX FOR 16 BITS

XTND/AUX
TO AC.

MOD TO XTND.

ABS VAL OF AC, AUX
WITH RESULT SIGN
IN LSB OF SIGN.

X SPECIFIES AC OR AUX

COMPL SPECIFIED REG
IF NEG.

CALC BASE ADR IN BASL,H
FOR GIVEN LINE NO
0<=LINE NO.<=$17

ARG=000ABCDE, GENERATE
BASH=000001CD

AND
BASL=EABABO00O

BELL CHAR? (CNTRL-G)
NO, RETURN
DELAY .01 SECONDS

TOGGLE SPEAKER AT
1 KHZ FOR .1 SEC.

CURSOR H INDEX TO Y-REG

STORE CHAR IN LINE

INCREMENT CURSOR H INDEX
(MOVE RIGHT)

BEYOND WINDOW WIDTH?
YES CR TO NEXT LINE
NO, RETURN

CONTROL CHAR?

NO,OUTPUT IT.
INVERSE VIDEO?

YES, OUTPUT IT.
CR?

YES.
LINE FEED?

IF SO, DO IT.

BACK SPACE? (CNTRL-H)
NO, CHECK FOR BELL.
DECREMENT CURSOR H INDEX
IF POS, OK. ELSE MOVE UP

SET CH TO WNDWDTH-1

(RIGHTMOST SCREEN POS)
CURSOR V INDEX

FClE:
FC20:
FC22:
FC24:
FC27:
FC29:
FC2B:
FC2C:
FC2E:
FC30:
FC32:
FC34:
FC36:
FC38:
FC3A:
FC3C:
FC3E:
FC40:
FC42:
FC44:
FC46:
FC47:
FC4A:
FC4D:
FC4F:
FC50:
FC52:
FC54:
FC56:
FC58:
FC5A:
FC5C:
FC5E:
FC60:
FC62:
FC64:
FC66:
FC68:
FC6A:
FC6C:
FC6E:
FC70:
FC72:
FC73:
FC76:
FC78:
FC7A:
FC7C:
FC7E:
FC80:
FC81:
FC82:
FC84:
FC86:
FC88:
FC89:
FC8C:
FC8E:
FC90:
FC91l:
FC93:
FC95:
FC97:
FC9A:
FCOC:
FC9E:
FCAO:
FCA2:
FCA3:
FCAS5:
FCAT7:
FCAS8:
FCA9:
FCAA:
FCAC:
FCAE:
FCAF':
FCB1l:
FCB3:
FCB4:
FCB6:
FCBS8:
FCBA:
FCBC:
FCBE:

FB

FC

FC

FC

FC

VTAB
VTABZ

RTS4
ESC1

CLREOP

CLEOP1

HOME

CR

LF

SCROLL

SCRL1

SCRL2

SCRL3

CLREOL
CLEOLZ
CLEOL2

WAIT
WAIT2
WAIT3

NXTA4

NXTAL

BCS
DEC
LDA
JSR
ADC
STA
RTS
EOR
BEQ
ADC
BCC
BEQ
ADC
BCC
BEQ
ADC
BCC
BNE
LDY
LDA
PHA
JSR
JSR
LDY
PLA
ADC
CMP
BCC
BCS
LDA
STA
LDY
STY
BEQ
LDA
STA
INC
LDA
CMP
BCC
DEC
LDA
PHA
JSR
LDA
STA
LDA
STA
LDY
DEY
PLA
ADC
CMP
BCS
PHA
JSR
LDA
STA
DEY
BPL
BMI
LDY
JSR
BCS
LDY
LDA
STA
INY
CPY
BCC
RTS
SEC
PHA
SBC
BNE
PLA
SBC
BNE
RTS
INC
BNE
INC
LDA
CMP
LDA

BASCALC
WNDLFT
BASL

#sco
HOME
#SFD
ADVANCE
BS
#SFD
LF

uP
#SFD
CLREOL
RTS4
CH

cv

VTABZ
CLEOLZ
#$00

#$00
WNDBTM
CLEOP1
VTAB
WNDTOP
cv
#$00
CH
CLEOP1
#$00
CH

cv

cv
WNDBTM
VTABZ
cv
WNDTOP

VTABZ
BASL
BAS2L
BASH
BAS2H
WNDWDTH

#$01
WNDBTM
SCRL3

VTABZ
(BASL),Y
(BAS2L),Y

SCRL2
SCRL1
#$00
CLEOLZ
VTAB

CH

#SA0
(BASL),Y

WNDWDTH
CLEOL2

#$01
WAIT3

#$01
WAIT2

A4L
NXTALl
A4H
AlL
A2L
AlH

84

IF TOP LINE THEN RETURN
DEC CURSOR V-INDEX

GET CURSOR V-INDEX
GENERATE BASE ADR

ADD WINDOW LEFT INDEX
TO BASL

ESC?

IF SO, DO HOME AND CLEAR

ESC-A OR B CHECK
A, ADVANCE
B, BACKSPACE

ESC-C OR D CHECK
C, DOWN
D, GO UP

ESC-E OR F CHECK
E, CLEAR TO END OF LINE
NOT F, RETURN

CURSOR H TO Y INDEX

CURSOR V TO A-REGISTER

SAVE CURRENT LINE ON STK

CALC BASE ADDRESS

CLEAR TO EOL, SET CARRY

CLEAR FROM H INDEX=0 FOR REST

INCREMENT CURRENT LINE

(CARRY IS SET)

DONE TO BOTTOM OF WINDOW?
NO, KEEP CLEARING LINES
YES, TAB TO CURRENT LINE

INIT CURSOR V
AND H-INDICES

THEN CLEAR TO END OF PAGE

CURSOR TO LEFT OF INDEX
(RET CURSOR H=0)
INCR CURSOR V(DOWN 1 LINE)

OFF SCREEN?

NO, SET BASE ADDR
DECR CURSOR V(BACK TO BOTTOM LINE)
START AT TOP OF SCRL WNDW

GENERATE BASE ADR
COPY BASL,H
TO BAS2L,H

INIT Y TO RIGHTMOST INDEX
OF SCROLLING WINDOW

INCR LINE NUMBER
DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)
MOVE A CHR UP ON LINE

NEXT CHAR OF LINE

NEXT LINE (ALWAYS TAKEN)
CLEAR BOTTOM LINE

GET BASE ADDR FOR BOTTOM LINE
CARRY IS SET

CURSOR H INDEX

STORE BLANKS FROM 'HERE'
TO END OF LINES (WNDWDTH)

1.0204 USEC
(13+2712*A+512*A*A)

INCR 2-BYTE A4
AND Al

INCR 2-BYTE Al.

AND COMPARE TO A2

FCCO:
FCC2:
FCC4:
FCC6:
FCC8:
FCC9:
FCCB:
FCCE:
FCDO:
FCD2:
FCD4:
FCD6:
FCD9:
FCDA:
FCDB:
FCDC:
FCDE:
FCEO:
FCE2:
FCE3:
FCE5:
FCES8:
FCEA:
FCEB:
FCEC:
FCEE:
FCEF:
FCF2:
FCF3:
FCF4:
FCF6:
FCF7:
FCF9:
FCFA:
FCFD:
FCFE:
FDO1l:
FDO03:
FDO5:
FDO7:
FDO09:
FDOB:
FDOC:
FDOE:
FD10:
FD11l:
FD13:
FD15:
FD17:
FD18:
FD1B:
FD1D:
FD1F:
FD21:
FD24:
FD26:
FD28:
FD2B:
FD2E:
FD2F:
FD32:
FD35:
FD38:
FD3A:
FD3C:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FD47:
FD4A:
FD4B:
FD4D:
FD50:
FD52:
FD54:
FD56:
FD58:
FD5A:
FD5C:
FD5F:
FD60:
FD62:
FD64:

08

FA

3A

FC

FC

Cco

FC

FC

Cco

00

Cco

Cco

FD

FD

02
FD

02

FF

FD

RTS4B
HEADR

WRBIT

ZERDLY

ONEDLY

WRTAPE

RDBYTE
RDBYT2

RD2BIT
RDBIT

RDKEY

KEYIN

KEYIN2

ESC

RDCHAR

NOTCR

NOTCR1

CANCEL

SBC
INC
BNE
INC
RTS
LDY
JSR
BNE
ADC
BCS
LDY
JSR
INY
INY
DEY
BNE
BCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
JSR
PLA
ROL
LDY
DEX
BNE
RTS
JSR
DEY
LDA
EOR
BPL
EOR
STA
CPY
RTS
LDY
LDA
PHA
AND
ORA
STA
PLA
JMP
INC
BNE
INC
BIT
BPL
STA
LDA
BIT
RTS
JSR
JSR
JSR
CMP
BEQ
RTS
LDA
PHA
LDA
STA
LDA
JSR
PLA
STA
LDA
CMP
BEQ
CMP
BEQ
CPX
BCC
JSR
INX
BNE
LDA
JSR

A2H
AlL
RTS4B
AlH

#54B
ZERDLY
HEADR
#SFE
HEADR
#s21
ZERDLY

ZERDLY
WRTAPE
#$32

ONEDLY
TAPEOUT
#s2C

#508

RD2BIT

#$3A
RDBYT2
RDBIT

TAPEIN
LASTIN
RDBIT
LASTIN
LASTIN
#$80

CH
(BASL),Y

#$3F
#$40
(BASL),Y

(KSWL)
RNDL
KEYIN2
RNDH

KBD
REYIN
(BASL),Y
KBD
KBDSTRB

RDKEY
ESC1l
RDKEY
#S9B
ESC

INVFLG

#SFF
INVFLG
IN,X
couT

INVFLG
IN,X
#$88
BCKSPC
#5598
CANCEL
#SF8
NOTCR1
BELL

NXTCHAR

#sDC
coutT

85

(CARRY SET IF >=)

WRITE A*256 'LONG 1°'
HALF CYCLES
(650 USEC EACH)

THEN A 'SHORT 0'
(400 USEC)

WRITE TWO HALF CYCLES
OF 250 USEC ('0')
OR 500 USEC ('0')

Y IS COUNT FOR
TIMING LOOP

8 BITS TO READ
READ TWO TRANSITIONS
(FIND EDGE)

NEXT BIT
COUNT FOR SAMPLES

DECR Y UNTIL
TAPE TRANSITION

SET CARRY ON Y

SET SCREEN TO FLASH

GO TO USER KEY-IN
INCR RND NUMBER

KEY DOWN?
LOOP
REPLACE FLASHING SCREEN
GET KEYCODE
CLR KEY STROBE

GET KEYCODE

HANDLE ESC FUNC.
READ KEY
ESC?

YES, DON'T RETURN

ECHO USER LINE
NON INVERSE

CHECK FOR EDIT KEYS
BS, CTRL-X
MARGIN?

YES, SOUND BELL
ADVANCE INPUT INDEX

BACKSLASH AFTER CANCELLED LINE

FD67:
FD6A:
FD6C:
FD6F:
FD71:
FD72:
FD74:
FD75:
FD78:
FD7A:
FD7C:
FD7E:
FD8O0:
FD82:
FD84:
FD87:
FD89:
FD8B:
FD8E:
FD90:
FD92:
FD94:
FD96:
FD99:
FDOC:
FD9E:
FDAO:
FDA3:
FDA5:
FDA7:
FDA9:
FDAB:
FDAD:
FDAF:
FDB1l:
FDB3:
FDB6:
FDB8:
FDBB:
FDBD:
FDCO:
FDC3:
FDC5:
FDC6:
FDC7:
FDCO:
FDCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDD6:
FDDO9:
FDDA:
FDDB:
FDDC:
FDDD:
FDDE:
FDDF':
FDE2:
FDE3:
FDE5:
FDE7:
FDEO9:
FDEB:
FDED:
FDFO:
FDF2:
FDF4:
FDF6:
FDF8:
FDFO9:
FDFC:
FDFD:
FDFF:
FEO0O:
FEO02:
FEO04:
FEO0S5:
FEO07:
FEO09:
FEOB:
FEOD:

20
A5
20
A2
8A
FO
CA
20
Cc9
DO
Bl
Cc9
90
29
9D
Cc9
DO
20
A9
DO
A4
A6
20
20
A0
A9
4c
A5
09
85
A5
85
A5
29
DO
20
A9
20
Bl
20
20
90
60
4A
90
4A
4A
A5
90
49
65
48
A9
20
68
48
4A
4A
4A
4A
20
68
29
09
Cc9
90
69
6C
Cc9
90
25
84
48
20
68
A4
60
Cé
FO
CA
DO
Cc9
DO
85
A5

EA

FD

FD

FD

02

FC

FD
F9

FD

FD

FD

FD

FC

FD

FD

00

FB

GETLNZ
GETLN

BCKSPC

NXTCHAR

CAPTST

ADDINP

CROUT

PRA1

PRYX2

XAM8

MODSCHK

XAM
DATAOUT

RTS4C
XAMPM

ADD

PRBYTE

PRHEX

PRHEXZ

couT

COUT1

COUTZ

BL1

BLANK

STOR

JSR
LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMP
BNE
LDA
CMP
BCC
AND
STA
CMP
BNE
JSR
LDA
BNE
LDY
LDX
JSR
JSR
LDY
LDA
JMP
LDA
ORA
STA
LDA
STA
LDA
AND
BNE
JSR
LDA
JSR
LDA
JSR
JSR
BCC
RTS
LSR
BCC
LSR
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JSR
PLA
PHA
LSR
LSR
LSR
LSR
JSR
PLA
AND
ORA
CMP
BCC
ADC
JMP
CMP
BCC
AND
STY
PHA
JSR
PLA
LDY
RTS
DEC
BEQ
DEX
BNE
CMP
BNE
STA
LDA

CROUT
PROMPT
COUT
#$01

GETLNZ

RDCHAR
#PICK
CAPTST
(BASL),Y
#SEO
ADDINP
#SDF
IN,X
#$8D
NOTCR
CLREOL
#$8D
COUT
AlH
AlL
CROUT
PRNTYX
#$00
#$SAD
COUT
AlL
#$07
A2L
AlH
A2H
AlL
#$07
DATAOUT
PRAL
#SA0
COUT
(AlL),Y
PRBYTE
NXTAl
MODSCHK

A
XAM
A

A
A2L
ADD
#SFF
AlL

#$BD
COUT

A
A
A
A
PRHEXZ

#SOF
#$BO
#$BA
COUT
#$06
(CSWL)
#SA0
COUTZ
INVFLG
Ysavl

VIDOUT
YSAV1

YSAV
XAMS

SETMDZ
#$BA
XAMPM
MODE
A2L

86

OUTPUT CR

OUTPUT PROMPT CHAR
INIT INPUT INDEX
WILL BACKSPACE TO O

USE SCREEN CHAR
FOR CTRL-U

CONVERT TO CAPS

ADD TO INPUT BUF

CLR TO EOL IF CR

PRINT CR,Al IN HEX

PRINT '-'

SET TO FINISH AT
MOD 8=7

OUTPUT BLANK
OUTPUT BYTE IN HEX

CHECK IF TIME TO,
PRINT ADDR

DETERMINE IF MON
MODE IS XAM
ADD, OR SUB

SUB: FORM 2'S COMPLEMENT

PRINT '=', THEN RESULT

PRINT BYTE AS 2 HEX
DIGITS, DESTROYS A-REG

PRINT HEX DIG IN A-REG
LSB'S

VECTOR TO USER OUTPUT ROUTINE

DON'T OUTPUT CTRL'S INVERSE
MASK WITH INVERSE FLAG
SAV Y-REG
SAV A-REG
OUTPUT A-REG AS ASCII
RESTORE A-REG

AND Y-REG

THEN RETURN

BLANK TO MON
AFTER BLANK
DATA STORE MODE?

NO, XAM, ADD, OR SUB
KEEP IN STORE MODE

FEOF: 91 40 STA (A3L),Y STORE AS LOW BYTE AS (A3)

FE1l: E6 40 INC A3L

FE13: DO 02 BNE RTS5 INCR A3, RETURN
FE15: E6 41 INC A3H

FE17: 60 RTS5 RTS

FE18: A4 34 SETMODE LDY YSAV SAVE CONVERTED ':', '+',
FE1A: B9 FF 01 LDA IN-1,Y '-', '.' AS MODE.
FE1D: 85 31 SETMDZ STA MODE

FEI1F: 60 RTS

FE20: A2 01 LT LDX #$01

FE22: B5 3E LT2 LDA A2L,X COPY A2 (2 BYTES) TO
FE24: 95 42 STA A4L,X A4 AND A5

FE26: 95 44 STA AS5L,X

FE28: CA DEX

FE29: 10 F7 BPL LT2

FE2B: 60 RTS

FE2C: Bl 3C MOVE LDA (AlL),Y MOVE (Al TO A2) TO
FE2E: 91 42 STA (A4L),Y (A4)

FE30: 20 B4 FC JSR NXTA4

FE33: 90 F7 BCC MOVE

FE35: 60 RTS

FE36: Bl 3C VFY LDA (AlL),Y VERIFY (Al TO A2) WITH
FE38: D1 42 CMP (A4L),Y (A4)

FE3A: FO 1C BEQ VFYOK

FE3C: 20 92 FD JSR PRAL

FE3F: Bl 3C LDA (AlL),Y

FE41: 20 DA FD JSR PRBYTE

FE44: A9 A0 LDA #S$A0

FE46: 20 ED FD JSR COUT

FE49: A9 A8 LDA #$AS8

FE4B: 20 ED FD JSR COUT

FE4E: Bl 42 LDA (A4L),Y

FE50: 20 DA FD JSR PRBYTE

FE53: A9 A9 LDA #S$A9

FE55: 20 ED FD JSR COUT

FE58: 20 B4 FC VFYOK JSR NXTA4

FE5B: 90 D9 BCC VFY

FE5D: 60 RTS

FE5E: 20 75 FE LIST JSR AlPC MOVE Al (2 BYTES) TO
FE61: A9 14 LDA #$14 PC IF SPEC'D AND
FE63: 48 LIST2 PHA DISEMBLE 20 INSTRS
FE64: 20 DO F8 JSR INSTDSP

FE67: 20 53 F9 JSR PCADJ ADJUST PC EACH INSTR
FE6A: 85 3A STA PCL

FE6C: 84 3B STY PCH

FE6E: 68 PLA

FE6F: 38 SEC

FE70: E9 01 SBC #$01 NEXT OF 20 INSTRS
FE72: DO EF BNE LIST2

FE74: 60 RTS

FE75: 8A AlPC TXA IF USER SPEC'D ADR
FE76: FO 07 BEQ ALPCRTS COPY FROM Al TO PC
FE78: B5 3C AlPCLP LDA AlL,X

FE7A: 95 3A STA PCL,X

FE7C: CA DEX

FE7D: 10 F9 BPL AlPCLP

FE7F: 60 ALPCRTS RTS

FE80: A0 3F SETINV LDY #$3F SET FOR INVERSE VID
FE82: DO 02 BNE SETIFLG VIA COUTL

FE84: A0 FF SETNORM LDY #S$SFF SET FOR NORMAL VID
FE86: 84 32 SETIFLG STY INVFLG

FE88: 60 RTS

FE89: A9 00 SETKBD LDA #$00 SIMULATE PORT #0 INPUT
FE8B: 85 3E INPORT STA A2L SPECIFIED (KEYIN ROUTINE)
FE8D: A2 38 INPRT LDX #KSWL

FESF: A0 1B LDY #KEYIN

FE91: DO 08 BNE IOPRT

FE93: A9 00 SETVID LDA #$00 SIMULATE PORT #0 OUTPUT
FE95: 85 3E OUTPORT STA A2L SPECIFIED (COUT1 ROUTINE)
FE97: A2 36 OUTPRT LDX #CSWL

FE99: A0 FO LDY #COUT1

FE9B: A5 3E IOPRT LDA A2L SET RAM IN/OUT VECTORS
FE9D: 29 OF AND #S$OF

FE9F: FO 06 BEQ IOPRT1

FEAl: 09 CO ORA #IOADR/256

FEA3: A0 00 LDY #$00

FEA5: FO 02 BEQ IOPRT2

FEA7: A9 FD IOPRT1 LDA #COUT1/256

FEA9: 94 00 IOPRT2 STY LOCO,X

FEAB: 95 01 STA LOC1,X

FEAD: 60 RTS

FEAE: EA NOP

FEAF: EA NOP

FEBO: 4C 00 E0 XBASIC JMP BASIC TO BASIC WITH SCRATCH
FEB3: 4C 03 E0 BASCONT JMP BASIC2 CONTINUE BASIC

87

FEB6: 20 75 FE GO JSR AlPC ADR TO PC IF SPEC'D

FEB9: 20 3F FF JSR RESTORE RESTORE META REGS
FEBC: 6C 3A 00 JMP (PCL) GO TO USER SUBR

FEBF: 4C D7 FA REGZ JMP REGDSP TO REG DISPLAY

FEC2: C6 34 TRACE DEC YSAV

FEC4: 20 75 FE STEPZ JSR AlPC ADR TO PC IF SPEC'D
FEC7: 4C 43 FA JMP STEP TAKE ONE STEP

FECA: 4C F8 03 USR JMP USRADR TO USR SUBR AT USRADR
FECD: A9 40 WRITE LDA #3540

FECF: 20 C9 FC JSR HEADR WRITE 10-SEC HEADER
FED2: A0 27 LDY #$27

FED4: A2 00 WR1 LDX #3500

FED6: 41 3C EOR (AlL,X)

FED8: 48 PHA

FED9: Al 3C LDA (AlL,X)

FEDB: 20 ED FE JSR WRBYTE

FEDE: 20 BA FC JSR NXTAl

FEEl: A0 1D LDY #$1D

FEE3: 68 PLA

FEE4: 90 EE BCC WR1

FEE6: A0 22 LDY #$22

FEE8: 20 ED FE JSR WRBYTE

FEEB: F0 4D BEQ BELL

FEED: A2 10 WRBYTE LDX #$10

FEEF: 0A WRBYT2 ASL A

FEF0: 20 D6 FC JSR WRBIT

FEF3: DO FA BNE WRBYT2

FEF5: 60 RTS

FEF6: 20 00 FE CRMON JSR BL1 HANDLE A CR AS BLANK
FEF9: 68 PLA THEN POP STACK
FEFA: 68 PLA AND RTN TO MON
FEFB: D0 6C BNE MONZ

FEFD: 20 FA FC READ JSR RD2BIT FIND TAPEIN EDGE
FF00: A9 16 LDA #3516

FF02: 20 C9 FC JSR HEADR DELAY 3.5 SECONDS
FF05: 85 2E STA CHKSUM INIT CHKSUM=$FF

FF07: 20 FA FC JSR RD2BIT FIND TAPEIN EDGE
FFOA: A0 24 RD2 LDY #$24 LOOK FOR SYNC BIT
FFOC: 20 FD FC JSR RDBIT (SHORT 0)

FFOF: BO F9 BCS RD2 LOOP UNTIL FOUND
FFll: 20 FD FC JSR RDBIT SKIP SECOND SYNC H-CYCLE
FFl4: A0 3B LDY #$3B INDEX FOR 0/1 TEST
FF16: 20 EC FC RD3 JSR RDBYTE READ A BYTE

FF19: 81 3C STA (AlL,X) STORE AT (Al)

FF1B: 45 2E EOR CHKSUM

FF1D: 85 2E STA CHKSUM UPDATE RUNNING CHKSUM
FF1F: 20 BA FC JSR NXTAl INC Al, COMPARE TO A2
FF22: A0 35 LDY #$35 COMPENSATE 0/1 INDEX
FF24: 90 FO BCC RD3 LOOP UNTIL DONE

FF26: 20 EC FC JSR RDBYTE READ CHKSUM BYTE
FF29: C5 2E CMP CHKSUM

FF2B: FO 0D BEQ BELL GOOD, SOUND BELL AND RETURN
FF2D: A9 C5 PRERR LDA #3C5

FF2F: 20 ED FD JSR COUT PRINT "ERR", THEN BELL
FF32: A9 D2 LDA #$D2

FF34: 20 ED FD JSR COUT

FF37: 20 ED FD JSR COUT

FF3A: A9 87 BELL LDA #$87 OUTPUT BELI AND RETURN
FF3C: 4C ED FD JMP COUT

FF3F: A5 48 RESTORE LDA STATUS RESTORE 6502 REG CONTENTS
FF4l: 48 PHA USED BY DEBUG SOFTWARE
FF42: A5 45 LDA ACC

FF44: A6 46 RESTR1 LDX XREG

FF46: A4 47 LDY YREG

FF48: 28 PLP

FF49: 60 RTS

FF4A: 85 45 SAVE STA ACC SAVE 6502 REG CONTENTS
FF4C: 86 46 SAV1 STX XREG

FF4E: 84 47 STY YREG

FF50: 08 PHP

FF51: 68 PLA

FF52: 85 48 STA STATUS

FF54: BA TSX

FF55: 86 49 STX SPNT

FF57: D8 CLD

FF58: 60 RTS

FF59: 20 84 FE RESET JSR SETNORM SET SCREEN MODE

FF5C: 20 2F FB JSR INIT AND INIT KBD/SCREEN
FF5F: 20 93 FE JSR SETVID AS I/O DEV'S

FF62: 20 89 FE JSR SETKBD

FF65: D8 MON CLD MUST SET HEX MODE !
FF66: 20 3A FF JSR BELL

FF69: A9 AA MONZ LDA #$AA '*' PROMPT FOR MON
FF6B: 85 33 STA PROMPT

FF6D: 20 67 FD JSR GETLNZ READ A LINE

88

FF70: 20 C7 FF JSR ZMODE CLEAR MON MODE, SCAN IDX

FF73: 20 A7 FF NXTITM JSR GETNUM GET ITEM, NON-HEX
FF76: 84 34 STY YSAV CHAR IN A-REG
FF78: A0 17 LDY #$17 X-REG=0 IF NO HEX INPUT
FF7A: 88 CHRSRCH DEY

FF7B: 30 E8 BMI MON NOT FOUND, GO TO MON
FF7D: D9 CC FF CMP CHRTBL,Y FIND CMND CHAR IN TEL
FF80: DO F8 BNE CHRSRCH

FF82: 20 BE FF JSR TOSUB FOUND, CALL CORRESPONDING
FF85: A4 34 LDY YSAV SUBROUTINE
FF87: 4C 73 FF JMP NXTITM

FF8A: A2 03 DIG LDX #$03

FF8C: O0A ASL A

FF8D: O0A ASL A GOT HEX DIG,
FF8E: 0A ASL A SHIFT INTO A2
FF8F: 0A ASL A

FF90: OA NXTBIT ASL A

FF91: 26 3E ROL A2L

FF93: 26 3F ROL A2H

FF95: CA DEX LEAVE X=$FF IF DIG
FF96: 10 F8 BPL NXTBIT

FF98: A5 31 NXTBAS LDA MODE

FF9A: DO 06 BNE NXTBS2 IF MODE IS ZERO
FF9C: B5 3F LDA A2H,X THEN COPY A2 TO
FF9E: 95 3D STA AlH,X Al AND A3

FFAO: 95 41 STA A3H,X

FFA2: E8 NXTBS2 INX

FFA3: FO F3 BEQ NXTBAS

FFA5: DO 06 BNE NXTCHR

FFA7: A2 00 GETNUM LDX #$00 CLEAR A2

FFA9: 86 3E STX A2L

FFAB: 86 3F STX A2H

FFAD: B9 00 02 NXTCHR LDA 1IN,Y GET CHAR

FFBO: C8 INY

FFBl: 49 BO EOR #$BO

FFB3: C9 0A CMP #$0A

FFB5: 90 D3 BCC DIG IF HEX DIG, THEN
FFB7: 69 88 ADC #$88

FFB9: C9 FA CMP #S$FA

FFBB: B0 CD BCS DIG

FFBD: 60 RTS

FFBE: A9 FE TOSUB LDA #GO/256 PUSH HIGH-ORDER
FFCO: 48 PHA SUBR ADR ON STK
FFCl: B9 E3 FF LDA SUBTBL,Y PUSH LOW-ORDER
FFC4: 48 PHA SUBR ADR ON STK
FFC5: A5 31 LDA MODE

FFC7: A0 00 ZMODE LDY #$00 CLR MODE, OLD MODE
FFC9: 84 31 STY MODE TO A-REG

FFCB: 60 RTS GO TO SUBR VIA RTS
FFCC: BC CHRTBL. DFB $BC F("CTRL-C")

FFCD: B2 DFB $B2 F("CTRL-Y")

FFCE: BE DFB $BE F("CTRL-E")

FFCF: ED DFB $ED F("T")

FFDO: EF DFB S$EF F("V")

FFDl: C4 DFB $C4 F("CTRL-K")

FFD2: EC DFB S$EC F("S")

FFD3: A9 DFB $A9 F("CTRL-P")

FFD4: BB DFB $BB F("CTRL-B")

FFD5: A6 DFB $A6 F("-")

FFD6: A4 DFB $A4 F("+")

FFD7: 06 DFB $06 F("M") (F=EX-OR $B0+$89)
FFD8: 95 DFB $95 F("<")

FFD9: 07 DFB $07 F("N")

FFDA: 02 DFB $02 F("I")

FFDB: 05 DFB $05 F("L")

FFDC: FO DFB S$F0 F("W")

FFDD: 00 DFB $00 F("G")

FFDE: EB DFB S$EB F("R")

FFDF: 93 DFB $93 F(":")

FFEO: A7 DFB $A7 F(".")

FFEl: C6 DFB $C6 F("CR")

FFE2: 99 DFB $99 F (BLANK)

FFE3: B2 SUBTBL DFB BASCONT-1

FFE4: C9 DFB USR-1

FFE5: BE DFB REGZ-1

FFE6: Cl DFB TRACE-1

FFE7: 35 DFB VFY-1

FFE8: 8C DFB INPRT-1

FFE9: C3 DFB STEPZ-1

FFEA: 96 DFB OUTPRT-1

FFEB: AF DFB XBASIC-1

FFEC: 17 DFB SETMODE-1

FFED: 17 DFB SETMODE-1

FFEE: 2B DFB MOVE-1

FFEF: 1F DFB LT-1

89

FFFO:
FFF1l:
FFF2:
FFF3:
FFF4:
FFF5:
FFF6:
FFF7:
FFF8:
FFF9:
FFFA:
FFFB:
FFFC:
FFFD:
FFFE:
FFFF:

83
7F
5D
cc
F5
FC
17
17
F5
03
FB
03
59
FF
86
FA

XQTNZ

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
EQU

#SETNORM-1

#SETINV-1

#LIST-1

#WRITE-1

#GO-1

#READ-1

#SETMODE-1

#SETMODE-1

#CRMON-1

#BLANK-1

#NMI NMI VECTOR
#NMI/256

#RESET RESET VECTOR
#RESET/256

#IRQ IRQ VECTOR
#IRQ/256

$3C

90

F500:
F502:
F503:
F505:
F507:
F509:
F50B:
F50C:
F50D:
F50E:
F50F:
F511:
F513:
F515:
F516:

3A

0l

kkhkkkhhkkhhkkhhhkhhkkhhkhhrhxkx

APPLE-II
MINI-ASSEMBLER

COPYRIGHT 1977 BY
APPLE COMPUTER INC.

ALL RIGHTS RESERVED

S. WOZNIAK
A. BAUM

¥ % ok % X X %k X X X * *
* Ok ok Ok F X Ok X X X F

*
R o R R R R R

TITLE "APPLE-II MINI-ASSEMBLER"

FORMAT EPZ $2E
LENGTH EPZ $2F
MODE EPZ $31
PROMPT EPZ $33
YSAV EPZ $34
L EPZ $35
PCL EPZ $3A
PCH EPZ $3B
AlH EPZ $3D
A2L EPZ $3E
A2H EPZ $3F
A4L EPZ $42
A4H EPZ $43
FMT EPZ $44
IN EQU $200
INSDS2 EQU $F88E
INSTDSP EQU $F8DO
PRBL2 EQU S$F94A
PCADJ EQU $F953
CHARL EQU $F9B4
CHAR?2 EQU $F9BA
MNEML EQU $F9CO
MNEMR EQU $FA00
CURSUP EQU S$FClA
GETLNZ EQU $FD67
CcouT EQU S$FDED
BL1 EQU S$FEO00
A1PCLP EQU S$FE78
BELL EQU S$FF3A
GETNUM EQU S$FFA7
TOSUB EQU S$FFBE
ZMODE EQU S$FFC7
CHRTBL EQU $FFCC
ORG $F500
REL SBC #$81
LSR A
BNE ERR3
LDY A2H
LDX A2L
BNE REL2
DEY
REL2 DEX
TXA
CLC
SBC PCL
STA A2L
BPL REL3
INY
REL3 TYA

91

IS FMT COMPATIBLE
WITH RELATIVE MODE?
NO.

DOUBLE DECREMENT

FORM ADDR-PC-2

F517:
F519:
F51B:
F51D:
F520:
F522:
F523:
F525:
F528:
F52B:
F52E:
F531:
F533:
F535:
F538:
F53B:
F53D:
F540:
F542:
F544:
F545:
F547:
F54A:
F54cC:
F54E:
F550:
F552:
F554:
F556:
F559:
F55C:
F55E:
F561:
F562:
F565:
F567:
F569:
F56C:
F56E:
F570:
F572:
F574:
F576:
F578:
F57A:
F57C:
F57E:
F580:
F582:
F584:
F586:
F588:
F589:
F58A:
F58D:
F58F:
F592:
F595:
F597:
F599:
F59C:
F59F:
F5A2:
F5A4:
F5A6:
F5A7:
F5A9:
F5AB:
F5AC:
F5AF:
F5B1:
F5B3:
F5B4:
F5B6:
F5B9:
F5BB:
F5BD:
F5CO0:
F5C1:
F5C3:
F5C5:
F5C7:
F5C8:
F5C9:
F5CB:

E5
DO
A4
B9
91
88
10
20
20
20
20
84
85
4c
20
A4
20
84
A0
88
30
D9
DO
co
DO
A5
A0
Cé6
20
4c
A5
20

BD
C5
DO
BD
C5
DO
A5
A4
co
FO
C5
FO
Cé
DO
E6
Cé6
FO
A4
98
AA
20
A9
20
20
A9
85
20
20
AD
c9
FO
c8
Cc9
FO
88
20
c9
DO
8A
FO
20
A9
85
20
0A
E9
Cc9
90
0A
0A
A2
0A

00

FF

FE

F8

FA

F9

F9
FD
FF

FD

02

FF

FE

Fé6

ERR3
FINDOP
FNDOP2

FAKEMON3

FAKEMON

FAKEMON2

TRYNEXT

NREL

NEXTOP

ERR
ERR2

RESETZ
NXTLINE

ERR4

SPACE

NXTMN
NXTM

NXTM2

SBC
BNE
LDY
LDA
STA
DEY
BPL
JSR
JSR
JSR
JSR
STY
STA
JMP
JSR
LDY
JSR
STY
LDY
DEY
BMI
CMP
BNE
CPY
BNE
LDA
LDY
DEC
JSR
JMP
LDA
JSR
TAX
LDA
CMP
BNE
LDA
CMP
BNE
LDA
LDY
CPY
BEQ
CMP
BEQ
DEC
BNE
INC
DEC
BEQ
LDY
TYA
TAX
JSR
LDA
JSR
JSR
LDA
STA
JSR
JSR
LDA
CcMP
BEQ
INY
CMP
BEQ
DEY
JSR
CMP
BNE
TXA
BEQ
JSR
LDA
STA
JSR
ASL
SBC
CMP
BCC
ASL
ASL
LDX
ASL

PCH

ERR
LENGTH
AlH,Y
(PCL), Y

FNDOP2
CURSUP
CURSUP
INSTDSP
PCADJ
PCH

PCL
NXTLINE
TOSUB
YSAV
GETNUM
YSAV
#$17

RESETZ
CHRTBL, Y
FAKEMON2
#s15
FAKEMON3
MODE

#$0

YSAV

BL1
NXTLINE
AlH
INSDS2

MNEMR, X
A4L
NEXTOP
MNEML, X
A4H
NEXTOP
FMT
FORMAT
#$9D
REL
FORMAT
FINDOP
AlH
TRYNEXT
FMT

L
TRYNEXT
YSAV

PRBL2
#$DE
COUuT
BELL
#SA1
PROMPT
GETLNZ
ZMODE
IN
#$A0
SPACE

#$A4
FAKEMON

GETNUM
#$93
ERR2

ERR2
AlPCLP
#$3
AlH
GETNSP
A

#$BE
#$c2
ERR2

A

A

#54

A

92

ERROR IF >1-BYTE BRANCH

MOVE INST TO (PC)

RESTORE CURSOR
TYPE FORMATTED LINE
UPDATE PC

GET NEXT LINE

GO TO DELIM HANDLER
RESTORE Y-INDEX

READ PARAM

SAVE Y-INDEX

INIT DELIMITER INDEX
CHECK NEXT DELIM

ERR IF UNRECOGNIZED DELIM
COMPARE WITH DELIM TABLE
NO MATCH

MATCH, IS IT CR?

NO, HANDLE IT IN MONITOR

HANDLE CR OUTSIDE MONITOR

GET TRIAL OPCODE
GET FMT+LENGTH FOR OPCODE

GET LOWER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE.
GET UPPER MNEMONIC BYTE
MATCH?

NO, TRY NEXT OPCODE

GET TRIAL FORMAT

TRIAL FORMAT RELATIVE?
YES.

SAME FORMAT?

YES.

NO, TRY NEXT OPCODE

NO MORE, TRY WITH LEN=2
WAS L=2 ALREADY?

NO.

YES, UNRECOGNIZED INST.

PRINT "~ UNDER LAST READ
CHAR TO INDICATE ERROR
POSITION.

vy
INITIALIZE PROMPT
GET LINE.

INIT SCREEN STUFF
GET CHAR

ASCII BLANK?

YES

ASCII '$' IN COL 1?
YES, SIMULATE MONITOR
NO, BACKUP A CHAR

GET A NUMBER

':' TERMINATOR?

NO, ERR.

NO ADR PRECEDING COLON.
MOVE ADR TO PCL, PCH.
COUNT OF CHARS IN MNEMONIC

GET FIRST MNEM CHAR.
SUBTRACT OFFSET
LEGAL CHAR?

NO.
COMPRESS-LEFT JUSTIFY

DO 5 TRIPLE WORD SHIFTS

F5CC:
F5CE:
F5DO0:
F5D1:
F5D3:
F5D5:
F5D7:
F5D9:
F5DB:
F5DE:
F5EQ:
F5E3:
F5E5:
F5E8:
F5EB:
F5ED:
F5F0:
F5F2:
F5F4:
F5F6:
F5F8:
F5F9:
F5FA:
F5FC:
F5FE:
F600:
F603:
F605:
F607:
F608:
F60A:
F60C:
F60D:
F60F:
F610:
F612:
F6l4:
F615:
F61l6:
F618:
F61A:
F61C:
F61E:
F620:
F622:
F624:
F626:
F629:
F62B:
F62D:
F62F:
F631:
F634:
F637:
F638:
F63A:
F63C:

F666:

Fé6

F9

Fé6
F9

F9

FF

02

F5
02

F5

FORM1
FORM2

FORM3
FORM4
FORM5

FORM6

FORM7

FORMS8

FORMY
GETNSP

MINASM

ROL
ROL
DEX
BPL
DEC
BEQ
BPL
LDX
JSR
STY
CMP
BNE
JSR
CMP
BEQ
LDA
BEQ
CMP
BEQ
LDY
CLC
DEY
ROL
CPX
BNE
JSR
LDA
BEQ
INX
STX
LDX
DEY
STX
DEX
BPL
LDA
ASL
ASL
ORA
CMP
BCS
LDX
BEQ
ORA
STA
STY
LDA
CMP
BEQ
CMP
BNE
JMP
LDA
INY
CMP
BEQ
RTS
ORG
JMP

A4L
A4H

NXTM2
AlH
NXTM2
NXTMN
#$5
GETNSP
YSAV
CHAR1, X
FORM3
GETNSP
CHAR2, X
FORM5
CHAR2, X
FORM4
#SA4
FORM4
YSAV

FMT
#$3
FORM7
GETNUM
A2H
FORM6

#$3
AlH

FORM2
FMT
A

A

L
#$20
FORMS
L
FORMS
#$80
FMT
YSAV
IN,Y
#$BB
FORM9
#$8D
ERR4
TRYNEXT
IN,Y

#$A0
GETNSP

$F666
RESETZ

93

DONE WITH 3 CHARS?

YES, BUT DO 1 MORE SHIFT
NO

5 CHARS IN ADDR MODE

GET FIRST CHAR OF ADDR

FIRST CHAR MATCH PATTERN?
NO

YES, GET SECOND CHAR
MATCHES SECOND HALF?

YES.

NO, IS SECOND HALF ZERO?
YES.

NO,SECOND HALF OPTIONAL?
YES.

CLEAR BIT-NO MATCH
BACK UP 1 CHAR

FORM FORMAT BYTE

TIME TO CHECK FOR ADDR.
NO

YES

HIGH-ORDER BYTE ZERO
NO, INCR FOR 2-BYTE
STORE LENGTH

RELOAD FORMAT INDEX
BACKUP A CHAR

SAVE INDEX

DONE WITH FORMAT CHECK?
NO.

YES, PUT LENGTH

IN LOW BITS

ADD "$" IF NONZERO LENGTH
AND DON'T ALREADY HAVE IT

GET NEXT NONBLANK
';' START OF COMMENT?
YES

CARRIAGE RETURN?

NO, ERR.

GET NEXT NON BLANK CHAR

*hkhkhkhkhkkhkhkdkdhddhdkhrkdkhhrhhrhx*x

APPLE-II FLOATING
POINT ROUTINES

COPYRIGHT 1977 BY
APPLE COMPUTER INC.

ALL RIGHTS RESERVED

S. WOZNIAK

* %k Ok X Ok Ok X X Ok X X
* Ok k F F Ok X X 3k F X

*hkkhkhhkkhhkdkhhkhkhdkhrkdkhhhhkxx

TITLE "FLOATING POINT ROUTINES"

SIGN EPZ S$F3

X2 EPZ S$F4

M2 EPZ S$F5

X1 EPZ S$F8

M1 EPZ S$F9

E EPZ S$FC

OVLOC EQU $3F5

ORG $F425

F425: 18 ADD CLC CLEAR CARRY
F426: A2 02 LDX #$2 INDEX FOR 3-BYTE ADD.
F428: B5 F9 ADD1 LDA M1,X
F42A: 75 F5 ADC M2,X ADD A BYTE OF MANT2 TO MANT1
F42C: 95 F9 STA M1,X
F42E: CA DEX INDEX TO NEXT MORE SIGNIF. BYTE.
F42F: 10 F7 BPL ADD1l LOOP UNTIL DONE.
F431: 60 RTS RETURN
F432: 06 F3 MD1 ASL SIGN CLEAR LSB OF SIGN.
F434: 20 37 F4 JSR ABSWAP ABS VAL OF M1, THEN SWAP WITH M2
F437: 24 F9 ABSWAP BIT M1 MANT1 NEGATIVE?
F439: 10 05 BPL ABSWAPl1 NO, SWAP WITH MANT2 AND RETURN.
F43B: 20 A4 F4 JSR FCOMPL YES, COMPLEMENT IT.
F43E: E6 F3 INC SIGN INCR SIGN, COMPLEMENTING LSB.
F440: 38 ABSWAP1 SEC SET CARRY FOR RETURN TO MUL/DIV.
F441l: A2 04 SWAP LDX #$4 INDEX FOR 4 BYTE SWAP.
F443: 94 FB SWAP1 STY E-1,X
F445: B5 F7 LDA X1-1,X SWAP A BYTE OF EXP/MANT1 WITH
F447: B4 F3 LDY X2-1,X EXP/MANT2 AND LEAVE A COPY OF
F449: 94 F7 STY X1-1,X MANT1 IN E (3 BYTES). E+3 USED
F44B: 95 F3 STA X2-1,X
F44D: CA DEX ADVANCE INDEX TO NEXT BYTE
F44E: DO F3 BNE SWAP1 LOOP UNTIL DONE.
F450: 60 RTS RETURN
F451: A9 8E FLOAT LDA #$8E INIT EXP1 TO 14,
F453: 85 F8 STA X1 THEN NORMALIZE TO FLOAT.
F455: A5 F9 NORM1 LDA M1 HIGH-ORDER MANT1l BYTE.
F457: C9 CO CMP #$CO UPPER TWO BITS UNEQUAL?
F459: 30 OC BMI RTS1 YES, RETURN WITH MANT1 NORMALIZED
F45B: C6 F8 DEC X1 DECREMENT EXP1l.
F45D: 06 FB ASL M1+2
F45F: 26 FA ROL M1+1 SHIFT MANT1 (3 BYTES) LEFT.
F461: 26 F9 ROL M1
F463: A5 F8 NORM LDA X1 EXP1 ZERO?
F465: DO EE BNE NORM1 NO, CONTINUE NORMALIZING.
F467: 60 RTS1 RTS RETURN.
F468: 20 A4 F4 FSUB JSR FCOMPL CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20 7B F4 SWPALGN JSR ALGNSWP RIGHT SHIFT MANT1 OR SWAP WITH
F46E: A5 F4 FADD LDA X2
F470: C5 F8 CMP X1 COMPARE EXP1l WITH EXP2.
F472: DO F7 BNE SWPALGN IF #,SWAP ADDENDS OR ALIGN MANTS.
F474: 20 25 F4 JSR ADD ADD ALIGNED MANTISSAS.
F477: 50 EA ADDEND BVC NORM NO OVERFLOW, NORMALIZE RESULT.
F479: 70 05 BVS RTLOG OV: SHIFT M1 RIGHT, CARRY INTO SIGN

94

F47B:

F47D:
F47F:
F480:
F482:
F484:
F486:
F488:
F489:
F48B:
F48C:
F48F:
F491:
F494:
F495:
F498:
F49A:
F49D:
F49E:
F4A0:
F4A2:
F4Rn4d:
F4A5:
F4A7:
F4A9:
F4AB:
F4AD:
F4AE:
F4BO:
F4B2:
F4B5:
F4B7:
F4BA:
F4BB:
F4BD:
F4BF:
F4Cl:
F4C2:
F4C3:
F4C5:
F4C7:
F4C8:
F4CA:
F4CC:
F4CD:
F4CF:
F4D1:
F4D3:
F4D5:
F4D7:
F4D9:
F4DB:
F4DD:
F4DE:
F4EQ:
F4E2:
F4E4:
F4EG6:
F4E8:
F4EA:
F4EC:
F4ED:
F4EE:
F4FO0:
F4F2:
F4F4:
FA4F6:
F4F7:
F4F9:

F63D:
F640:
F642:
F644:
F646:
F648:
F64A:
F64C:
F64E:
F650:
F652:
F654:
F656:
F657:
F659:
F65B:
F65D:

90

A5
0A
E6
FO
A2
76
E8
DO
60
20
65
20
18
20
90
20
88
10
46
90
38
A2
A9
F5
95
(67:
DO
FO
20
E5
20
38
A2
B5
F5
48
ca
10
A2
68
90
95
E8
DO
26
26
26
06
26
26
BO
88
DO
FO
86
86
86
BO
30
68
68
90
49
85
A0
60
10
4C

20
A5
10
Cc9
DO
24
10
A5
FO
E6
DO
E6
60
A9
85
85
60

F4

F4

F4

F4

F4

F4

03

F4

ALGNSWP

*
RTAR

RTLOG

RTLOGL
ROR1

FMUL

MUL1

MUL2

MDEND

NORMX
FCOMPL

COMPL1

FDIV

DIV1

DIV2

DIV3

DIV4

MD2

MD3

OVCHK
OVFL

FIX1
FIX

FIXRTS
UNDFL

BCC SWAP
LDA M1
ASL

INC X1
BEQ OVFL
LDX #S$FA
ROR E+3,X
INX

BNE RORL
RTS

JSR MD1
ADC X1
JSR MD2
CLC

JSR RTLOG1
BCC MUL2
JSR ADD
DEY

BPL MUL1
LSR SIGN
BCC NORM
SEC

LDX #8$3
LDA #S$0
SBC X1,X
STA X1,X
DEX

BNE COMPL1
BEQ ADDEND
JSR MD1
SBC X1
JSR MD2
SEC

LDX #$2
LDA M2,X
SBC E,X
PHA

DEX

BPL DIV2
LDX #SFD
PLA

BCC DIV4
STA M2+3,X
INX

BNE DIV3
ROL M1+2
ROL M1l+1
ROL M1
ASL M2+2
ROL M2+1
ROL M2
BCS OVFL
DEY

BNE DIVl
BEQ MDEND
STX M1+2
STX M1+l
STX M1
BCS OVCHK
BMI MD3
PLA

PLA

BCC NORMX
EOR #$80
sTA X1
LDY #S$17
RTS

BPL MD3
JMP OVLOC
ORG S$F63D
JSR RTAR
LDA X1
BPL UNDFL
CMP #$8E
BNE FIX1
BIT M1
BPL FIXRTS
LDA M1+2
BEQ FIXRTS
INC M1l+1
BNE FIXRTS
INC M1
RTS

LDA #S$0
sTA M1
STA M1+l
RTS

95

SWAP IF CARRY CLEAR,

ELSE SHIFT RIGHT ARITH.

SIGN OF MANT1 INTO CARRY FOR
RIGHT ARITH SHIFT.

INCR X1 TO ADJUST FOR RIGHT SHIFT
EXP1 OUT OF RANGE.

INDEX FOR 6:BYTE RIGHT SHIFT.

NEXT BYTE OF SHIFT.

LOOP UNTIL DONE.

RETURN.

ABS VAL OF MANT1, MANT2

ADD EXP1l TO EXP2 FOR PRODUCT EXP
CHECK PROD. EXP AND PREP. FOR MUL
CLEAR CARRY FOR FIRST BIT.

M1 AND E RIGHT (PROD AND MPLIER)
IF CARRY CLEAR, SKIP PARTIAL PROD
ADD MULTIPLICAND TO PRODUCT.

NEXT MUL ITERATION.

LOOP UNTIL DONE.

TEST SIGN LSB.

IF EVEN,NORMALIZE PROD,ELSE COMP
SET CARRY FOR SUBTRACT.

INDEX FOR 3 BYTE SUBTRACT.

CLEAR A.
SUBTRACT BYTE OF EXP1.
RESTORE IT.

NEXT MORE SIGNIFICANT BYTE.

LOOP UNTIL DONE.

NORMALIZE (OR SHIFT RT IF OVFL).
TAKE ABS VAL OF MANT1l, MANT2.
SUBTRACT EXP1 FROM EXP2.

SAVE AS QUOTIENT EXP.

SET CARRY FOR SUBTRACT.

INDEX FOR 3-BYTE SUBTRACTION.

SUBTRACT A BYTE OF E FROM MANT2.
SAVE ON STACK.

NEXT MORE SIGNIFICANT BYTE.

LOOP UNTIL DONE.

INDEX FOR 3-BYTE CONDITIONAL MOVE
PULL BYTE OF DIFFERENCE OFF STACK
IF M2<E THEN DON'T RESTORE M2.

NEXT LESS SIGNIFICANT BYTE.
LOOP UNTIL DONE.

ROLL QUOTIENT LEFT, CARRY INTO LSB

SHIFT DIVIDEND LEFT

OVFL IS DUE TO UNNORMED DIVISOR
NEXT DIVIDE ITERATION.

LOOP UNTIL DONE 23 ITERATIONS.
NORM. QUOTIENT AND CORRECT SIGN.

CLEAR MANT1 (3 BYTES) FOR MUL/DIV.

IF CALC. SET CARRY,CHECK FOR OVFL
IF NEG THEN NO UNDERFLOW.
POP ONE RETURN LEVEL.

CLEAR X1 AND RETURN.

COMPLEMENT SIGN BIT OF EXPONENT.
STORE IT.

COUNT 24 MUL/23 DIV ITERATIONS.
RETURN.

IF POSITIVE EXP THEN NO OVFL.

F689:
F68C:
F68D:
F68F:
F690:
F692:
F695:
F698:
F69A:
F69C:
F69E:
F6A0:
F6Al:
F6A3:
F6AS5:
F6AT7:
F6A8:
F6A9:
F6AA:
F6AC:
F6AE:
F6B0:
F6Bl:
F6B2:
F6B3:
F6B4:
F6B7:
F6B8:
F6B9:
F6BB:
F6BD:
F6BF:
F6C2:
F6C3:
F6C5:
F6C6:
F6C7:
F6C8:
F6C9:
F6CC:
F6CF:

4A

3F

1E

FF

Fé6
F6

Fé6

F6

FF
00

*hkhkhkhhkkhkhkdkdhkdkhrdkhkdhkhrhhhx*x

* %k %k X X Ok 2k X X X X

APPLE-II PSEUDO
MACHINE INTERPRETER

COPYRIGHT 1977
APPLE COMPUTER INC

ALL RIGHTS RESERVED

S. WOZNIAK

* %k kX F 3k X X X F

*

*hkhkhkdhkdkhkdkdhkdkhrkdkhkdkhkhdhhx*x

TITLE "SWEET16 INTERPRETER"

ROL EPZ
ROH EPZ
R14H EPZ
R15L EPZ
R15H EPZ
S16PAG EQU
SAVE EQU
RESTORE EQU
ORG
SW16 JSR
PLA
STA
PLA
STA
SW16B JSR
JMP
SWleéC INC
BNE
INC
SW16D LDA
PHA
LDY
LDA
AND
ASL
TAX
LSR
EOR
BEQ
STX
LSR
LSR
LSR
TAY
LDA
PHA
RTS
TOBR INC
BNE
INC
TOBR2 LDA
PHA
LDA
LSR
RTS
RTNZ PLA
PLA
JSR
JMP
SETZ LDA

$0

sl
$1D
$1E
$1F
SF7
SFF4A
SFF3F
$F689
SAVE

R15L

R15H
SwWleC
SW16B
R15L
SW16D
R15H
#SW16PAG

#$0
(R15L),Y
#S$F

A

A
(R15L),Y
TOBR
R14H

A

A

A

PRESERVE 6502 REG CONTENTS

INIT SWEET16 PC
FROM RETURN
ADDRESS
INTERPRET AND EXECUTE
ONE SWEET16 INSTR.

INCR SWEET16 PC FOR FETCH

PUSH ON STACK FOR RTS

FETCH INSTR

MASK REG SPECIFICATION

DOUBLE FOR TWO BYTE REGISTERS
TO X REG FOR INDEXING

NOW HAVE OPCODE

IF ZERO THEN NON-REG OP
INDICATE'PRIOR RESULT REG'
OPCODE*2 TO LSB'S

TO Y REG FOR INDEXING

OPTBL-2,Y LOW ORDER ADR BYTE

R15L
TOBR2
R15H
BRTBL, X

R14H
A

RESTORE
(R15L)
(R15L),Y

96

ONTO STACK
GOTO REG-OP ROUTINE

INCR PC

LOW ORDER ADR BYTE

ONTO STACK FOR NON-REG OP
'PRIOR RESULT REG' INDEX
PREPARE CARRY FOR BC, BNC.
GOTO NON-REG OP ROUTINE
POP RETURN ADDRESS

RESTORE 6502 REG CONTENTS
RETURN TO 6502 CODE VIA PC
HIGH-ORDER BYTE OF CONSTANT

F6D1:
F6D3:
F6D4:
F6D6:
F6D8:
F6D9:
F6DA:
F6DC:
F6DE:
F6EO:
F6E2:
F6E3:
F6E4:
F6ES:
F6E6:
F6E7:
F6ES8:
F6E9:
F6EA:
F6EB:
F6EC:
F6ED:
F6EE:
F6EF:
F6F0:
F6F1:
F6F2:
F6F3:
F6F4:
F6F5:
F6F6:
F6F7:
F6F8:
F6F9:
F6FA:
F6FB:
F6FC:
F6FD:
F6FE:
F6FF:
F700:
F701:
F702:
F703:
F705:

F707:
F709:
F70B:
F70D:
F70E:
F710:
F712:
F714:
F716:
F717:
F719:
F71B:
F71D:
F71F:
F721:
F723:
F725:
F726:
F728:
F72A:
F72C:
F72E:
F730:
F732:
F734:
F737:
F739:
F73A:
F73D:
F73F:
F741:
F743:
F745:
F747:
F748:
F74B:
F74D:
F74F:
F752:

F7

F7

F7

F7
F7

SET2
OPTBL
BRTBL

SET

BK

ST

STAT
STAT2

STAT3
INR
INR2
LDAT

POP

POPD

POP2

POP3

LDDAT

STDAT

STA
DEY
LDA
STA
TYA
SEC
ADC
STA
BCC
INC
RTS
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
BPL
LDA
EQU
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDY
STY
INC
BNE
INC
RTS
LDA
STA
LDY
STY
BEQ
LDY
BEQ
JSR
LDA
TAY
JSR
LDA
STA
STY
LDY
STY
RTS
JSR
LDA
STA
JMP
JSR

ROH, X

(R15L),Y LOW-ORDER BYTE OF CONSTANT

ROL, X

R15L
R15L
SET2
R15H

SET-1
RTN-1
LD-1
BR-1
ST-1
BNC-1
LDAT-1
BC-1
STAT-1
BP-1
LDDAT-1
BM-1
STDAT-1
Bz-1
POP-1

STAT3

POP2
DCR
(ROL, X)

DCR
(ROL, X)
ROL
ROH
#$0
R14H

LDAT
(ROL, X)
ROH
INR
STAT

97

Y-REG CONTAINS 1

ADD 2 TO PC

(1X)
(0)
(2X)
(1)
(3X)
(2)
(4X)
(3)
(5X)
(4)
(6X)
(5)
(7X)
(6)
(8X)
(7)
(9X)
(8)
(AX)
(9)
(BX)
(RA)
(CX)
(B)
(DX)
(C)
(EX)
(D)
(FX)
(E)
(UNUSED)
(F)
ALWAYS TAKEN

MOVE RX TO RO

MOVE RO TO RX

STORE BYTE INDIRECT
INDICATE RO IS RESULT NEG

INCR RX

LOAD INDIRECT (RX)
TO RO

ZERO HIGH-ORDER RO BYTE
ALWAYS TAKEN

HIGH ORDER BYTE = 0
ALWAYS TAKEN

DECR RX

POP HIGH ORDER BYTE @RX
SAVE IN Y-REG

DECR RX

LOW-ORDER BYTE

TO RO

INDICATE RO AS LAST RESULT REG
LOW-ORDER BYTE TO RO, INCR RX
HIGH-ORDER BYTE TO RO

INCR RX
STORE INDIRECT LOW-ORDER

F755:
F757:
F759:
F75C:
F75F:
F761:
F763:
F766:
F768:
F76A:
F76C:
F76E:
F76F:
F771:
F772:
F774:
F776:
F779:
F77B:
F77D:
F780:
F781:
F783:
F785:
F786:
F788:
F78A:
F78C:
F78E:
F790:
F792:
F794:
F796:
F799:
F79B:
F79E:
F79F:
F7Al:
F7A3:
F7A5:
F7A6:
F7A8:
F7AA:
F7AB:
F7AD:
F7AF:
F7B0:
F7B2:
F7B3:
F7B4:
F7B5:
F7B7:
F7B9:
F7BA:
F7BB:
F7BC:
F7BE:
F7CO:
F7Cl:
F7C2:
F7C3:
F7C5:
F7C7:
F7C9:
F7CA:
F7CB:
F7CC:
F7CE:
F7DO0:
F7D2:
F7D3:
F7D4:
F7D5:
F7D7:
F7D9:
F7DB:
F7DD:
F7DE:
F7DF:
F7EQ:
F7TE2:
F7E4:
F7E6:
F7E8:
F7E9:

01
E8

01
El

F7
F7

F7

00

00

F7

F7

STPAT

DCR

DCR2

SUB
CPR

SUB2

ADD

BS

BR
BNC
BR1

BR2

BNC2
BC

BP

BM

BZ

BNZ

BM1

BNM1

NUL
RS

LDA
STA
JMP
JSR
LDA
STA
JMP
LDA
BNE
DEC
DEC
RTS
LDY
SEC
LDA
SBC
STA
LDA
SBC
STA
TYA
ADC
STA
RTS
LDA
ADC
STA
LDA
ADC
LDY
BEQ
LDA
JSR
LDA
JSR
CLC
BCS
LDA
BPL
DEY
ADC
STA
TYA
ADC
STA
RTS
BCS
RTS
ASL
TAX
LDA
BPL
RTS
ASL
TAX
LDA
BMI
RTS
ASL
TAX
LDA
ORA
BEQ
RTS
ASL
TAX
LDA
ORA
BNE
RTS
ASL
TAX
LDA
AND
EOR
BEQ
RTS
ASL
TAX
LDA
AND
EOR
BNE
RTS
LDX

ROH
(ROL, X)
INR
DCR
ROL
(ROL, X)
POP3
ROL, X
DCR2
ROH, X
ROL, X

#$0

ROL
ROL, X
ROL,Y
ROH
ROH, X
ROH,Y

#$0
R14H

ROL
ROL, X
ROL
ROH
ROH, X
#50
SUB2
R15L
STAT2
R15H
STAT2

BNC2
(R15L),Y
BR2

R15L
R15L

R15H
R15H

BR
A

ROH, X
BR1

ROH, X
BR1

ROL, X
ROH, X
BR1

ROL, X
ROH, X
BR1

ROL, X
ROH, X
#SFF
BR1

ROL, X
ROH, X
#SFF
BR1

#518

98

BYTE AND INCR RX. THEN
STORE HIGH-ORDER BYTE.
INCR RX AND RETURN

DECR RX

STORE RO LOW BYTE @RX
INDICATE RO AS LAST RSLT REG

DECR RX

RESULT TO RO
NOTE Y-REG = 13*2 FOR CPR

RO-RX TO RY

LAST RESULT REG*2
CARRY TO LSB

RO+RX TO RO

RO FOR RESULT

FINISH ADD

NOTE X-REG IS 12%*2!

PUSH LOW PC BYTE VIA RI12
PUSH HIGH-ORDER PC BYTE
NO CARRY TEST
DISPLACEMENT BYTE

ADD TO PC

DOUBLE RESULT-REG INDEX
TO X REG FOR INDEXING
TEST FOR PLUS

BRANCH IF SO

DOUBLE RESULT-REG INDEX

TEST FOR MINUS

DOUBLE RESULT-REG INDEX
TEST FOR ZERO

(BOTH BYTES)

BRANCH IF SO

DOUBLE RESULT-REG INDEX
TEST FOR NON-ZERO

(BOTH BYTES)

BRANCH IF SO

DOUBLE RESULT-REG INDEX

CHECK BOTH BYTES
FOR $FF (MINUS 1)

BRANCH IF SO

DOUBLE RESULT-REG INDEX

CHECK BOTH BYTES FOR NO S$FF
BRANCH IF NOT MINUS 1

12*2 FOR R12 AS STK POINTER

F7EB:
F7EE:
F7F0:
F7F2:
F7F5:
F7F7:
F7F9:
F7FA:

66 F7
00
1F
66 F7
00
1E

C7 F6 RTN

JSR
LDA
STA
JSR
LDA
STA
RTS
JMP

DCR DECR STACK POINTER
(ROL,X) POP HIGH RETURN ADR TO PC
R15H

DCR SAME FOR LOW-ORDER BYTE
(ROL, X)

R15L

RTNZ

99

ADC

AND
ASL

BCC
BCS
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS
CLC
CLD
CLI
CLV
CMP
CPX
CPY
DEC
DEX
DEY
EOR

INC
INX
INY
JMP
JSR

6502 MICROPROCESSOR INSTRUCTIONS

Add Memory to Accumulator with
Carry

"AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with
Accumulator

Branch on Result Minus
Branch on Result not Zero
Branch on Result Plus

Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit
Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement index X by One
Decrement Index Y by One
"Exclusive-Or" Memory with
Accumulator

Increment Memory by One
Increment Index X by One
Increment Index Y by One
Jump to New Location

Jump to New Location Saving
Return Address

100

LDA
LDX
LDY
LSR

NOP
ORA
PHA
PHP
PLA

PLP

ROL

ROR

RTI
RTS
SBC

SEC
SED
SEI

STA
STX
STY
TAX
TAY
TSX
TXA
TXS

Load Accumulator with Memory
Load Index X with Memory

Load Index Y with Memory

Shift Right one Bit (Memory or
Accumulator)

No Operation

OR Memory with Accumulator
Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack

Pull Processor Status from Slack
Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status
Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory
Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

A Accumulator FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION
X, Y Index Registers
M Memory E 76 |5 |4 3|21 0 <—|E|
Y Memor ol 7lels [4]af2]1]0]
P Processor Status Register
S Stack Pointer FIGURE 2 ROTATE ONE BIT LEFT (MEMORY
v Change OR ACCUMULATOR)
- No Change
+ Add WORA
A Logical AND J
; Subtract I_{7|6|5|4|3|2|1|0|
Y Logical Exclusive OR
4 Transfer From Slack FIGURE 3.
¥ Transfer To Stack
- Transfer To
- Transfer To L
v Logical OB [c}—~ Ll [T}
PC Program Counter
PCH Program Conter High
PCL Program Counter low NOTE 1: BIT - TEST BITS
OPER Operrand
Immediate Addressing Mode Bit 6 and 7 are transferred to the status register. If the
result of AA M is zero than Z=1, otherwise Z=0.

7 0

| A | AaccumuLATOR

7 0

| X | INDEX REGISTER Y

7 0

| Y | INDEX REGISTER X

15 7 0
PCH | PCL | PROGRAM COUNTER
7 0
[o1] 5 | sTACKk POINTER
7 0
[NJv][B][D]1]Z[C] PROCESSOR STATUS REGISTER, 'P"
CARRY
ZERO

INTERRUPT DISABLE
DECIMAL MODE
BREAK COMMAND
OVERFLOW
NEGATIVE

101

auo Aq
———=AN L 88 A3a A= 1L—A A Xapul Juawaioaq
A3d
auo Aq
—— AN 1 Yo X3a parjduy X< 1—X X Xapul Juawaidag
X3ida
€ aa X‘1ado 930 X‘ainjosqy
€ ER] 1ado 930 ainjosqy
[4 9a X‘1edo 93a | Xx‘abed olaz auo Aq
[N 2 99 19d0 930 abed olaz N<I—N Klowaw yuswaidag
J3d
€ 20 Jado AdD ainjosqy
4 9 Jadp AdD abied 0497 A xapul
——=AAN 4 09 18do# AdD ajelpaww| WN—A pue flowsw aiedwo)
Add
€ 23 Jado Xdd aynjosqy
[va 1ado Xd9 abied o197 X xapul
——— AN 2z 03 19d0o# Xd9 ajeIpaww| N—X pue Alowaw asedwoy
Xdd
4 10 | A'(ado) dIWD A‘(10841puy)
[19 | (x48do) dWO (x‘30841pu)
[4 60 A'1ado dIND A‘enjosqy
4 aa x‘18dg dIND X‘anjosqy
4 a Jado dIND ainjosqy
[sa X'1ed0 dWD | X ‘abed osaz
Z 59 18d0 dIND abed 0197 10je|nwnaoe
——— AN 4 69 19d0# dIND ajelpaww| N—V pue Alowaw asedwoy
diN)
||||| 0 L 84 A1 patjdu Bejy mojyiano 1es|
AT)
-=0--- ! 8¢ 19 paiidu| -0
119
————0- L 8a a1 palidu) =<0 apow [ew1d3p Jes|)
an
——0——- 1 8l 219 paldu) 9+0 Beyy Kisea sea|
19
|||||| z oL 1adQ SAg L=A U0 yaueig 18S MO|J13A0 U0 youe.g
SAd
AQIJZN sayig | apon uuo4 apo uonduasag
‘boy SaelS ody | 'ON do aBenfueq b v nesado aweN
X3H fiquiassy

S3d0D NOILONYLSNI

*| Bumes AQ PaXSEWI 97 JOUUED PUBLILIOD YHE V

‘¢ 90N

‘019z S N ANV V JO insal 8y §| “4e)siBal Snjels oy} 0} pawisjsues) aJe / pue g 1ig :|. 910N

"0 = Z SISO | =Z uayl

IIIIII 2 0S ‘_wao JINgG aAlle|aY 0=A U0 youeuag 1B3|J MO[}JI3A0 UO Yyoueuag
JAG
ddie+ad
1dnaiaiug

B 1 00 L] paiduy padiog yealg 8dlo4
n4d
|||||| z oL Jado 149 anlje|ay | 0=N uo youeig sn|d }insas uo youeig
144
|||||| z 0a 18do INg aAlje|ay | 0=z uo youeug | 048Z JouU }|NSaJ UO Youelg
nNg
|||||| 4 0¢ 18do NG anlje|ay | L=N uo youeig Snuiw }|nsal uo youeig
ING
9 . € 22 Jado L9 A==SI 10je|NWNIE YUM
W-—=~N | 2 | ve 18dQ ,118 ‘NI ‘WYY Kiowaw up syq 1881
114
|||||| z 04 Jado p3g anne|ay | 1=z uo youeig 043Z }|nsal uo yaueig
(EE:]
|||||| 4 o9 Jadg sog aAleldYy | =9 uo youeig 18s K11ed uo youeig
894
|||||| z 06 1ado 909 annejay | 0=9 uo yaueig Jea|o A11ed uo yaueig
394

€ L X‘1ado SV X ainjosqy

€ 20 1ado TSV ajnjosqy

z 9l x‘18dg 1Sy | X abed o197z
z 90 Jado 1SV abed 0197 (101|NWN22Y 10 A1owap)
———ANN 1 v0 ¥ 1Sy | Jojeinwnaay | (1 anbiy 9as) 1g 8uo Ya| YIus
18V

[4 Le A‘(1ed0) anv A'(108.1pu))

4 kA (x‘48d0) aANY (x“30811pu1)

€ 6¢ A'1ado any A dnjosqy

€ 0¢ X'18do aNv X ainjosqy

I3 0z 19dp anNv anjosqy

z 13 x‘1edo any | X 9bed olez
4 [*r4 18do any abed 0197 Joje|nwnooe
I N z 62 19do# ANY ajelpaww| Y<WVY yum Alowsw ,aNY,
any

4 1L A‘(ado 9av A‘(10841pu))

4 19 (x‘1edo 9av (x“308.11puy)

[3 6L A‘tedo 9av A @Injosqy

[3 0L X‘1edo 9av X ainjosqy

€ 09 Jedo oav ainjosqy

4 [:72 X‘18dg 9@y | X abed otz
4 G9 19do aav abed 019z K180 yum soyenwnooe
Y\ 69 Jado# 9av ajelpaww| PR ASHE R 0} frowaw ppy
aayv

AQI9ZN |sag | apog wio4 apoi uonduosag
"6ay sajelS «dy | ON do abenbuel Buissaippy uonesado awen
X3H Riquassy

102

€ EVA X‘19dQ 4oy X‘ainjosqy

€ 19 1ado 4od ajnjosqy

4 9L x‘48do 4oy X‘abed o197
4 99 18d0 HOY abied 0197 (1038 INWN99e 10 Alowaw)
e AYAYAS 1 v9 ¥V HOH| J01BInwWnIdy|((g aunbiy aas) 1ub11 31q Buo djeIoY
404

€ E X‘18d0 104 X‘anjosqy

€ El 19d0 704 ainjosqy

4 9¢ X‘1ado 104 X‘abed 018z
4 92 J1ado 104 abied oJaz (1012|NWN29E J0 Alowaw)
——=ANAN 1 ve V104 | 101B[NWNIDIY | (Z aunbi4 88s) 43| }1q 3uo ajejoy
104
}98)S Woly
3oe1S woly I 8¢ d1d paldw Vd snje}s 10ssaosoud |ng
did
}9B)S Woly
—— AN 1 89 Vv1d paljdw (2] Joje|nwnage ysnd
¥id
}98.)S U0
|||||| I 80 dHd patjdu) Ad snjels 10ssao04d ysnd
did
}981S uo
|||||| T3 VHd paldu Ay J03}e|NWNIYE Ysng
YHd

4 LL A‘(1ado) vdo A‘(30811pU))

4 10 (x'18d0) vd0 (x‘yo841puy)

€ 13 A'18do vHO A‘anjosqy

€ 0L X'12d0 vH0 X'a1njosqy

€ 00 1ado vd0 ~e1njosqy

z Sl X'18d0 vd0 x‘abed 0197
4 S0 13do vd0 abed 0197 Joje|nwnooe
———=AN z 60 lado# vdO ajelpaww| V<=NAY uum fowaw Yo,
Y40
|||||| T va dON pandw uorjesado oN uonjesado oN
dON

€ EL) X‘18dQ HS1 X‘ainjosqy

€ ElL4 1ado Ys1 alnjosqy

z 95 X‘18do HS1 X‘abed 019z
4 9 Jado YS1 abed 018z (403e|nWnaae 1o frowaw)
Y] 1 0% YV Y4S1 | Joleinwnaay | (1 ainbi4 9ag) 1nq auo 1ybu Yiys
481

AQIJZN saifg | apog ulo4 POl uonduosag
‘Bay sarels . d, ‘ON do abenbue Buissaippy uonesadg aweN
X3H Rquassy

€ Bk} X'18do AQ1 X‘ainjosqy
€ v Jado AQ1 ajnjosqy
4 v x‘18dg AQ@1 [x‘abed 0iaz
z i 19do AQ1 abed 019z Kowaw yum
—— AN z ov 1ado# AQ1 ajelpaww| A=W A Xapul peo1
Ad1
€ EE:| A'1edo xa1 A‘anjosqy
€ ay Jado xa1 ainjosqy
4 99 A‘deado xa1 | A‘ebed olez
4 9V Jadg xa1 afieq 019z Klowaw yyum
—— AN 4 oV Jado# Xa1 ajelpaww| X<+N X Xapul peo
Xai
2z 1 A'(1ado) vai A‘(10811pU))
4 LY (x‘1ed0) val (x‘109.11puy)
€ 64 A4ado val A‘ainjosqy
€ ag x‘18d0 va1 X‘a1njosqy
€ oy Jado val alnjosqy
z 1] X‘18d0 va1 | x‘sbed 018z
4 SY 1ado va1 abed oJa7 Klowaw yym
———=AN 4 6Y 18do# Va1 ajelpawuw| V<N J01e|NWNIIE peo
vai
Hod<- (2+0d)
19d= (1+9d) ssaippe uinjal buines
|||||| € 0¢ 18do Hsr anjosqy 4 2+0d uoieso| mau o} dwnp
4sr
€ 29 (12d0) dNP 1oau1pu| HOd = (2+9d)
|||||| € i 1ado dINP ajnjosqy 19d=<= (1+2d) uoleao| mau o} dwnp
diur
———=/NN I 89 ANI paijduw| A==1 + A | ouo kg A xapul juswaiou|
ANI
———=AN 1 83 XNI paljdwi X=—1L + X | auo Aq X xapul Juawaiou|
XNI
€ EE| Xx‘18dQ 9NI X‘anjosqy
€ EE] 1ado ONI ainjosqy
4 94 X‘18d0 ONI | x‘ebed 0197 auo Aq
———=AN 4 93 13do 9NI afied 019z N1+ N Klowaw juawaidu|
JNI
z 1S A‘(1edo) Y03 A‘(0811puy)
4 (87 (x‘12d0) 403 (x“30011puy)
€ 65 A‘18d0 Y03 A‘anjosqy
€ 0§ X‘19do 403 X‘ainjosqy
€ oy 1adp Y03 ajnjosqy
4 14 x‘18d0 403 | x‘abed 019z
2 [:172 18do Y03 abed 0197 101B[NWNIIE YHM
———=/N 4 6 1ado# 403 8jelpaww| Y<—NAY fiowaw ,10-aAI1sN|IX3,
403
AQIOZN salig | apog wog apop uonduasaq
"6ay sajels «dy | "ON do 1 Buissaippy nesado aweN
X3H Riquassy

S3dO0D NOILONYHLSNI

103

X Xapui 0}

s

10}e|NWNo9e 0}

1 86 VAL V<A A Xapul Jajsuea]
VAl
|||||| J91uiod yoeis
I V6 SX1 S<X 0] X Xapul Jajsue]
SX1
10}e|NWNIIE 0}
———=/ N L V8 VXL pandw V<X X Xapul Jajsues]
VX1
AQI9ZN | sofg| apog wiog 3P uopduosag
*bay sajels *ON do afienbueq Buissaippy uonesadg aweN
XIH Aquassy

S3dO0D NOILONHLSNI

———=AN 1 v XSL palduw X=S Jajuiod yoe)s Jajsued]
XS1
A X8apul 0}
———=AN 1 8y AVL pardwi A<=V 10]e[NWNIJR Jajsuel]
AVl
X Xapul 0}
———=AN L '\ XYL paldw X<V 103e|NWNI2E J3jsueI]
XVl
€ BE: | 1adQ ALS ainjosqy
4 V6 X‘1adQ ALS x‘abed 0197
|||||| 4 V8 18dQ ALS abeq 0197 N=A Kiowaw ur A xapul 810}S
ALS
€ 38 1ado X1S ajnjosqy
4 96 A‘1ado X1S A‘abed o1az
|||||| [4 98 Jadp x18 abeq 0197 N=X Klowaw uy X xapui 31013
X18
[4 16 A'(1ado) VLIS A'(10311puy)
[18 (x*12d0) V1S (x“y0041pu))
€ 66 A'1ado V1S A‘anjosqy
€ 06 X'19d0 V1S x‘ainjosqy
€ 08 Jado V1S anjosqy
4 G6 X'18d0 V1S X‘abed 019z Kowaw ul
|||||| z G8 19dQ V1S abed 0197 N=Y 10}8|NWNI2E 810}S
V1S
snjejs
———— 1 8/ 13s paiduwy |- a|qesIp 1dn.iajul 18s
138
 p— 1 84 a3s patjdu) a1 apow [ewIdap 188
ais
——=l-- I 8¢ HER) paiduw I=1| Bejy A11ed j8s
918
1 [E] 1ado# 08S A'(19811puy)
4 13 1ado# 94s (x‘103.1pu)
€ 64 A'(1ado) 928s A‘anjosqy
€ a4 (x*4ado) 089S X'a1njosqy
3 a3 A4ado 08s ainjosqy
[4 E] x‘1edo 99S | X‘sbed osaz
z] Jadg 924S abieq 019z M0140q Y}IM JOJe|NWNIIE
A== NN z 63 1ado# 049S ajelpaww| Y<9-W-V wouy A1owaw 19eI11qNS
288
|||||| 1 Sy paldw | Od<— L=-0d ‘49d 3U1IN0JGNS WoJy uINjey
Siy
3981 Woug] oY 114 paldwy Ydyd 1dnuiajul wouy uinyay
114
AQIOZN |s3kg| apog wiog apow uonduosag
*Hay Sale1S .. dy ‘ON do abenbueq Buissaippy uonesadg awen
X3H Klquiassy

104

dON — 44
X ‘enjosqy — ONI — 34
Xremnjosqy — 08s — ad

dON — Od
dON — a4
dON — V4
AeInjosqy — 0ds — 64
a3is — sd
dON — Z4

X ‘obed o107 — ONI — 94
X ‘obed o197 — 0gS — G4

dON — 4
HON — €4
dON — 24
A ‘@oaapu)) — 0gs — 14
Wg — o4
dON — 33

dnjosqy — ONI — 33
enjosqy — 08s — a3
onjosqy — Xdd — O3

dON — a3
dON — v3
ojelpsww] — 0gs — 63
XNI — a3
dON — /3

abed 010Z—ONI — 93
obed osez— 0ds — §3
abed o9z — XdO — +3
dON — €3

dON — 23

(X ‘4o2ua1pu)) — 0g@s — 13
ajelpaww] — XdO — 03
dON — 40

X ‘enjosqy — 93a — 3a
X @njosay — diND O— 0d
dOW— 2a

HON — 8d

dON — va

A‘emnjosqy — dWO— 64
ai1o — 80

HON— 20

X ‘ebed orez — 93A — 9d
X "abed 0197 — dIND — S0

dON — +a
HON — €d
dON — 2d
A ‘@0aapu) — dWO — 1A
ang — od
dON — 40

onjosqy — 93a 253a — 3D
amjosqy — dWO— ad
anjosqy — AdO— 00

dOWN— 80
X3aa — vo
sjelpsww] — dND — 60
ANI — 80
dON — 20

ebed oz — 030 — 90
obed 0197 — dWDO — SO
obed 0197 — AdO — 10O

dON — €0

dON — 20
X ‘40aupu)) — dIND — 1O
ejepawwW| — AdO — 09

dON — 44
A‘enjosqy — X071 — 39
X ‘einjosqy — val — as
X "emnjosqy — AQ1 — Od

dON — gd
XsL — va
Aemnjosqy — val — 68
A0 — 84
dON — /8

A ‘ebed o1z — X017 — 949
X ‘ebed olez — va@1 — S8
X ‘obed olez — AQ1 — 18

dON — €9
dON — 28

A ‘@oaapu) — val — 18
sog — og

HON— 4dv

enjosqy — xXal — 3Iv
enjosqy— av

anjosqy — AQT— OV
dON — av

XVL — Vv

elelpoww| — va1 — 6V
AVL — 8V

dON — IV

obed osez — XAl — 9V
abed oz — va@1 — SV
obed o1z — AQT — ¥V
HON — &V

ajelpaww| — XOT— gV
IX 4oaupu))— va1 — Iv
ejepaww| — AQ1 — OV

dON — 46
dON — 36
X ‘@njosqy — V1S — a6
dON — 06
dOWN — g6
SX1 — V6
A‘eInjosqy — V1S — 66
VAL — 86
dON — /6

A ‘obed o197 — XIS — 96
X ‘ebed ooz — V1S — G6
X ‘obed 0187 — ALS — 16

HON — €6
dON — 26
A ‘@oaupu)) — VIS — 16
008 — 06
dON — 48

onjosqy — X1s — 34
|njosqy — vis — a8

Injosqy — ALS —
dON —

VXL —

dON —

A3a —

dON —

obeq o9z — XIS —
obed ooz — v1S —
abed o1z — AlS—
dON —

dON —

IX ‘10a1pul) — V1S —
dON —

dON —

dON X ‘enjosqy — 808 —
dON X ‘ewnjosqy — oav —
dON —

dON —

dON —

Afewnjosqy — oav —
13s —

dON —

X ‘obed oiez — HOH —
X ‘ebedq oiez — oQv —
dON —

dON —

dON —

A ‘@0aapu)) — oav —
sSAg —

dON —

anjosqy — Hod —
dnosqy — oav —
103dpu| — dINF —

dON —

Jo1eINWNOdY — HYOH —
dlepsww| — dav —
vid —

dON —

obed ol97 — HOH —
abed olez — D@V —
dON —

dON —

dON —

X 4024ipu] — oQv —
Sld —

dON —

X ‘@injosqy — HST—

S3d0D NOILVH3dO X3H

08
88
v8
68
88
.8
98
g8
8
€8
c8
18
08
4L
EVA
as
oL
aL
V.
6L
8L
LL
9L
S
v
€L
cL
1L
0L
49
39
as
09
a9
v9
69
89
L9
99
59
9
€9
29
19
09
ER)
El

X ‘enjosqy — HO3 —
dON —
dON —
dON —

A ‘emnjosqy --4od4 —
170 —

dON —

X ‘ebed olez — HST —
X ‘ebeq oioz — YOI —
dON —

dON —

dON —

A ‘10alipu] HO3 —
ong —

dON—

dnjosqy — YsT —
|injosqy — 4o3 —
|mnjosqy — dIr —
HON—

J0}eINWNOJY — HST —
djelpsww] — Y4o3a —
VHd —

dON —

obed olez — HST —
abed otz — HOo3 —
HON —

dON —

dON —

X 18lipul — HO3 —
Id —

dON —

X ‘enjosqy — 04 —

X ‘elnjosqy — ANV —
dON —
dON —
dON —

A femnjosqy — aNv —
03s —
dON —

X "obed osoz — 104 —
X ‘ebedq o9z — ANV —
dON —
dON —
dON —

A ‘(49241pu)) — ANV —
ing —
dON —

0s
og
as
Vs
69
8G
1S
9§
SS
s
€9
cs
1S
0s
dv
E14
ar
or
av
vy
6v
8y
VA4
o
14
124
24
474
34
or
E
3€
ae
o€
ae
ve
6€
8¢
A
9€
g€
e
€€
(43
e
0og
de

anjosqy — 104 — I
anjosqy — ANV — Az
anjosqy — 119 — O¢
dON — g2

101BINWNJJY — T0H — V¢
ejelpaww| — ANV — 62
dld — 82

dON — /2

ebed o010z — 0H — 92
abed o8z — ANV — G2
obed otz — 119 — 2

dON — €2
HON — 22
(X ‘4)0221pU)— ANV — 12
HSr — 02
dON — 4L

X-emjosqy — sV — 3t
X ‘eInjosqy — vHO — Ot

HON— OJlI
dON — gl
HON — VI
A‘eInjosqy — vHO — 6}
070 — 8t
dON —

X "abed o8z — ISV — 9L
X ‘obed o187z — vHO — G

HON — i
dON — €L
dON — 2L

A ‘@0aapu)) — WHO — LI
1dg — oL
dON — 40

anjosqy-- ISv-- 30
anjosqy — vdO — Ao
dON — 20

dON — 80

Jore|Inwnddy — SY — VO
dlelpaww| — YHO — 60
dHd — 80

dON — 20

abed o9z — ISV — 90
abed 0197 — VHO — S0

HON — ¥0
HON — €0
dON — 20
IX "109J1pu)) — VHO — 10
Mda — 00

105

o koD~

o

APPLE Il HARDWARE

Getting Started with Your APPLE Il Board
APPLE Il Switching Power Supply
Interfacing with the Home TV

Simple Serial Output

Interfacing the APPLE —
Signals, Loading, Pin Connections

Memory —
Options, Expansion, Map, Address

. System Timing
. Schematics

106

GETTING STARTED WITH YOUR APPLE IT BOARD

INTRODUCTION

ITEMS YOU WILL NEED:

Your APPLE II board comes completely assembled and thoroughly tested.
You should have received the following:

a. 1 ea. APPLE II P.C. Board complete with
specified RAM memory.

b. 1 ea. d.c. power connector with cable.
c. 1 ea. 2" speaker with cable.
d. 1 ea. Preliminary Manual

e. 1 ea. Demonstration cassette tapes. (For 4K: 1 cassette (2 programs);
16K or greater: 3 cassettes.

f. 2 ea. 16 pin headers plugged into locations A7
and J14.

In addition you will need:

g. A color TV set (or B & W) equipped with a direct
video input connector for best performance or a com-
mercially available RF modulator such as a “Pixi-verter
Higher channel (7-13) modulators generally provide
better system performance than lower channel modulators
(2-6).

”tm

h. The following power supplies (NOTE: current ratings
do not include any capacity for peripheral boards.):

1. +12 Volts with the following current capacity!
a. For 4K or 16K systems - 35@0mA.
b. For 8K, 20K or 32K - 550mA.
c. For 12K, 24K, 36K or 48K - 850mA.
2. +5 Volts at 1.6 amps
3. -5 Volts at T1@mA.
4., OPTIONAL: If -12 Volts is reouired by your keyboard.

(If using an APPLE II supplied keyboard, you will
need -12V at 50mA.)

107

i. An audio cassette recorder such as a Panasonic model
RQ-309 DS which is used to Toad and save programs.

j. An ASCII encoded keyboard equipped with a "reset"
switch.

k.Cable for the following:
1. Keyboard to APPLE II P.C.B.
2. Video out 75 ohm cable to TV or modulator
3. Cassette to APPLE II P.C.B. (1 or 2)
Optionally you may desire:
1. Game paddles or pots with cables to APPLE II Game I/0
connector. (Several demo programs use PDL(0) and

"Pong" also uses PDL(1).

m. Case to hold all the above

Final Assembly Steps

1. Using detailed information on pin functions in hardware
section of manual, connect power supplies to d.c. cable
assembly. Use both ground wires to miminize resistance.
With cable assembly disconnected from APPLE II mother
board, turn on power supplies and verify voltages on
connector pins. Improper supply connections such as reverse
polarity can severely damage your APPLE II.

2. Connect keyboard to APPLE II by unplugging leader in
location A7 and wiring keyboard cable to it, then plug
back into APPLE II P.C.B.

3. Plug in speaker cable.

4, OQOptionally connect one or two game paddles using leader
supplied in socket Tocated at J14.

5. Connect video cable.

6. Connect cable from cassette monitor output to APPLE II
cassette input.

7. Check to see that APPLE II board is not contacting any
conducting surface.

8. With power supplies turned off, plug in power connector
to mother board then recheck all cableing.

108

POWER UP

1. Turn power on. If power supplies overload, immediately turn off
and recheck power cable wiring. Verify operating supply voltages
are within +3% of nominal value.

2. You should now have random video display. If not check video
Tevel pot on mother board, full clockwise is maximum video out-
put. Also check video cables for opens and shorts. Check
modulator if you are using one.

3. Press reset button. Speaker should beep and a "*" prompt
character with a blinking cursor should appear in Tlower
Teft on screen.

4, Press "esc" button, release and type a "@" (shift-P) to
clear screen.. You may now try "Monitor"™ commands if you
wish. See details in "Monitor" software section.

RUNNING BASIC

1. Turn power on; press reset button; type "control B"™ and press
return button. A ">" prompt character should appear on screen
indicating that you are now in BASIC.

2. Load one of the supplied demonstration cassettes into recorder.
Set recorder Tevel to approximately 5 and start recorder. Type
"LOAD"™ and return. First beep indicates that APPLE II has found
beginning of program; second indicates end of program followed
by ">" character on screen. If error occurs on loading, try a
different demo tape or try changing cassette volume Tlevel.

3. Type RUN and carriage return to execute demonstration program.

Listings of these are included in the Tast section of this
manual.

109

THE APPLE II SWITCHING POWER SUPPLY

Switching power supplies generally have both advantages and peculiarities
not generally found in conventional power supplies. The Apple II user
is urged to review this section.

Your Apple II is equipped with an AC line
voltage filter and a three wire AC line cord.
It is important to make sure that the third
wire is returned to earth ground. Use a con-
tinuity checker or ohmmeter to ensure that
the third wire is actually returned to earth.
Continuity should be checked for between the
power supply case and an available water pipe
for example. The line filter, which is of a
type approved by domestic (U.L. CSA) and
international (VDE) agencies must be returned
to earth to function properly and to avoid
potential shock hazards.

The APPLE II power supply is of the "flyback" switching type. In
this system, the AC line is rectified directly, "chopped up" by a high
frequency oscillator and coupled through a small transformer to the
diodes, filters, etc., and results in four Tow voltage DC supplies to
run APPLE II. The transformer isolates the DC supplies from the Tine
and is provided with several shields to prevent "hash" from being
coupled into the logic or peripherals. In the "flyback" system, the
energy transferred through from the AC line side to DC supply side is
stored in the transformer's inductance on one-half of the operating
cycle, then transferred to the output filter capacitors on the second
half of the operating cycle. Similar systems are used in TV sets to
provide horizontal deflection and the high voltages to run the CRT.

Regulation of the DC voltages is accomplished by controlling the
frequency at which the converter operates; the greater the output power
needed, the lower the frequency of the converter. If the converter is
overloaded, the operating frequency will drop into the audible range
with squeels and squawks warning the user that something is wrong.

A1T DC outputs are regulated at the same time and one of the four
outputs (the +5 volt supply) is compared to a reference voltage with
the difference error fed to a feedback loop to assist the oscillator
in running at the needed frequency. Since all DC outputs are regulated
together, their voltages will reflect to some extent unequal loadings.

110

For example; if the +5 supply is loaded very heavily, then all
other supply voltages will increase in voltage slightly; conversely,
very light loading on the +5 supply and heavy loading on the +12
supply will cause both it and the others to sag Tightly. If precision
reference voltages are needed for peripheral applications, they should
be provided for in the peripheral design.

In general, the APPLE II design is conservative with respect to
component ratings and operating termperatures. An over-voltage crowbar
shutdown system and an auxilliary control feedback Toop are provided
to ensure that even very unlikely failure modes will not cause damage to
the APPLE II computer system. The over-voltage protection references to
the DC output voltages only. The AC Tine voltage input must be within
the specified Timits, i.e., 197V to 132V.

Under no circumstances, should more
than 140 VAC be applied to the input
of the power supply. Permanent damage
will result.

Since the output voltages are controlled by changing the operating
frequency of the converter, and since that frequency has an upper Timit
determined by the switching speed of power transistors, there then must
be a minimum Toad on the supply; the Apple II board with minimum memory
(4K) is well above that minimum Toad. However, with the board discon-
nected, there is no load on the supply, and the internal over-voltage
protection circuitry causes the supply to turn off. A 9 watt load
distributed roughly 50-50 between the +5 and +12 supply is the nominal
minimum load.

Nominal load current ratios are: The +12V supply load is % that of the +5V.
The - 5V supply load is 1/1p that of the +5V.
The -12V supply load is 1/1p that of the +5V.

The supply voltages are +5.0 + 0.15 volts, +11.8 + p.5 volts, -12.p + 1V,
-5.2 + 0.5 volts. The tolerances are greatly reduced when the loads are
close to nominal.

The Apple II power supply will power the Apple II board and all present
and forthcoming plug-in cards, we recommend the use of Tow power TTL, CMOS,
etc. so that the total power drawn is within the thermal Timits of the entire
system. In particular, the user should keep the total power drawn by any
one card to Tess than 1.5 watts, and the total current drawn by all the cards
together within the following limits:

+ 12V - use no more than 250 mA
+ 5V - use no more than 500 mA
- 5V - use no more than 200 mA
- 12V - use no more than 200 mA

The power supply is allowed to run indefinetly under short circuit
or open circuit conditions.

CAUTION: There are dangerous high
voltages inside the power supply
case. Much of the internal circuitry
is NOT isolated from the power line,
and special equipment is needed for
service. NO REPAIR BY THE USER IS

ALLOWED.
111

NOTES ON INTERFACING WITH THE HOME TV

Accessories are available to aid the user in connecting the Apple II
system to a home color TV with a minimum of trouble. These units are called
"RF Modulators" and they generate a radio frequency signal corresponding to
the carrier of one or two of the Tower VHF television bands; 61.25 MHz
(channel 3) or 67.25 MHz (channel 4). This RF signal is then modulated with
the composite video signal generated by the Apple II.

Users report success with the following RF modulators:

the "PixieVerter" (a kit)
ATV Research

13th and Broadway

Dakota City, Nebraska 68731

the "TV-1" (a kit)
UHF Associates

6037 Haviland Ave.
Whittier, CA 90601

the "Sup-r-Mod" by (assembled & tested)
M&R Enterprises

P.0. Box 1011

Sunnyvale, CA 94088

the RF Modulator (a P.C. board)
Electronics Systems

P.0. Box 212

Burlingame, CA 94010

Most of the above are available through local computer stores.

The Apple II owner who wishes to use one of these RF Modulators should
read the following notes carefully.

A11 these modulators have a free running transistor oscillator. The
M&R Enterprises unit is pre-tuned to Channel 4. The PixieVerter and the
TV-1 have tuning by means of a jumper on the P.C. board and a small trimmer
capacitor. All these units have a residual FM which may cause trouble if
the TV set in use has a IF pass band with excessive ripple. The unit from
M&R has the least residual FM.

A1l the units except the M&R unit are kits to be built and tuned by
the customer. All the kits are incomplete to some extent. The unit from
Electronics Systems is just a printed circuit board with assembly instructions.
The kits from UHF Associates and ATV do not have an RF cable or a shielded
box or a balun transformer, or an antenna switch. The M&R unit is complete.

Some cautions are in order. The Apple II, by virtue of its color graphics
capability, operates the TV set in a linear mode rather than the 16@% contrast
mode satisfactory for displaying text. For this reason, radio frequency inter-
ference (RFI) generated by a computer (or peripherals) will beat with the

112

carrier of the RF modulator to produce faint spurious background patterns
(called "worms") This RFI "trash" must be of quite a Tow level if worms

are to be prevented. In fact, these spurious beats must be 40 to 5@db
below the signal level to reduce worms to an acceptable level. When it is
remembered that only 2 to 6 mV (across 300Q) is presented to the VHF input
of the TV set, then stray RFI getting into the TV must be less than 50uV

to obtain a clean picture. Therefore we recommend that a good, co-ax

cable be used to carry the signal from any modulator to the TV set, such

as RG/59u (with copper shield), Belden #8241 or an equivalent miniature
type such as Belden #8218. We also recommend that the RF modulator been
enclosed in a tight metal box (an unpainted die cast aluminum box such as
Pomona #2428). Even with these precautions, some trouble may be encountered
with worms, and can be greatly helped by threading the coax cable conn-
ecting the modulator to the TV set repeatedly through a Ferrite toroid core
Apple Computer supplies these cores in a kit, along with a 4 circuit
connector/cable assembly to match the auxilliary video connector found on
the Apple II board. This kit has order number A2MP1PpX. The M&R "Sup-r-Mod"
is supplied with a coax cable and toroids.

Any computer containing fast switching logic and high frequency clocks
will radiate some radio frequency energy. Apple II is equipped with a
good Tine filter and many other precautions have been taken to minimize
radiated energy. The user is urged not to connect "antennas" to this
computer; wires strung about carrying clocks and/data will act as antennas,
and subsequent radiated energy may prove to be a nuisance.

Another caution concerns possible long term effects on the TV picture
tube. Most home TV sets have "Brightness" and "Contrast" controls with a
very wide range of adjustment. When an un-changing picture is displayed
with high brightness for a long period ,a faint discoloration of the
TV CRT may occur as an inverse pattern observable with the TV set
turned off. This condition may be avoided by keeping the "Brightness"
turned down slightly and "Contrast" moderate.

113

A SIMPLE SERIAL OUTPUT

The Apple II is equipped with a 16 pin DIP socket most frequently
used to connect potentiometers, switches, etc. to the computer for
paddle control and other game applications. This socket, Tocated at
J-14, has outputs available as well. With an appropriate machine
language program, these output lines may be used to serialize data in
a format suitable for a teletype. A suitable interface circuit must
be built since the outputs are merely LSTTL and won't run a teletype
without help. Several interface circuits are discussed below and the
user may pick the one best suited to his needs.

The ASR - 33 Teletype

The ASR - 33 Teletype of recent vintage has a transistor circuit
to drive its solenoids. This circuit is quite easy to interface to,
since it is provided with its own power supply. (Figure Ta) It can
be set up for a 20mA current loop and interfaced as follows (whether
or not the teletype is strapped for full duplex or half duplex oper-
ation):

a) The yellow wire and purple wire should both go to
terminal 9 of Terminal Strip X. If the purple wire
is going to terminal 8, then remove it and relocate
it at terminal 9. This is necessary to change from
the 60mA current loop to the 20mA current loop.

b) Above Terminal Strip X is a connector socket identi-
fied as "2". Pin 8 is the input Tine + or high; Pin
7 is the input Tline - or Tlow. This connector mates
with a Molex receptacle model 1375 #@3-09-2151 or
#03-09-2153. Recommended terminals are Molex #02-09-
2136. An alternate connection method is via spade Tugs
to Terminal Strip X, terminal 7 (the + input line) and
6 (the - input Tine).

c) The following circuit can be built on a 16 pin DIP
component carrier and then plugged into the Apple's
16 pin socket found at J-14: (The junction of the
3.3k resistor and the transistor base lead is float-
ing). Pins 16 and 9 are used as tie points as they
are unconnected on the Apple board. (Figure 1a).

114

The "RS - 232 Interface"

For this interface to be Tegitimate, it is necessary to twice invert
the signal appearing at J-14 pin 15 and have it swing more than 5 volts
both above and below ground. The following circuit does that but requires
that both +12 and -12 supplies be used. (Figure 2) Snipping off pins
on the DIP-component carrier will allow the spare terminals to be used for
tie points. The output ground connects to pin 7 of the DB-25 connector.
The signal output connects to pin 3 of the DB-25 connector. The "protective”
ground wire normally found on pin 1 of the DB-25 connector may be connected
to the Apple's base plate if desired. Placing a #4 lug under one of the
four power supply mounting screws is perhaps the simplest method. The +12
volt supply is easily found on the auxiliary Video connector (see Figure S-11
or Figure 7 of the manual). The -12 volt supply may be found at pin 33 of
the peripheral connectors (see Figure 4) or at the power supply connector
(see Figure 5 of the manual).

A Serial Out Machine Center Language Program

Once the appropriate circuit has been selected and constructed a machine
language program is needed to drive the circuit. Figure 3 1ists such a tele-
type output machine Tanguage routine. It can be used in conjunction with an
Integer BASIC program that doesn't require page $30@0 hex of memory. This
program resides in memory from $370 to $3E9. Columns three and four of the
1isting show the op-code used. To enter this program into the Apple II the
following procedure is followed:

Entering Machine Language Program

1. Power up Apple II

2. Depress and release the "RESET" key. An asterick
and flashing cursor should appear on the left hand
side of the screen below the random text matrix.

3. Now type in the data from columns one, two and three
for each line from $370 to @3E9. For example, type in
"370: A9 82" and then depress and release the "RETURN"
key. Then repeat this procedure for the data at $372
and on until you complete entering the program.

Executing this Program
1. From BASIC a CALL 880 ($370) will start the execution of

this program. It will use the teletype or suitable 80
column printer as the primary output device.

115

2. PR#@ will inactivate the printer transfering control
back to the Video monitor as the primary output device.

3. In Monitor mode $370G activates the printer and hitting
the "RESET" key exits the program.

Saving the Machine Language Program

After the machine language program has been entered and checked for
accuracy it should, for convenience, be saved on tape - that is unless
you prefer to enter it by keyboard every time you want to use it.

The way it is saved is as follows:
1. Insert a blank program cassette into the tape
recorder and rewind it.

2. Hit the "RESET" key. The system should move
into Monitor mode. An asterick "*" and flash-
ing cursor should appear on the left-hand side
of the screen.

3. Type in "370.03E9W 370.03E9W".

4. Start the tape recorder in record mode and depress
the "RETURN" key.

5. When the program has been written to tape, the asterick
and flashing cursor will reappear.

The Program

After entering, checking and saving the program perform the following
procedure to get a feeling of how the program is used:

1. BC (control B) into BASIC

2. Turn the teletype (printer on)

3. Type in the following

19 CALL 880

15 PRINT "ABCD...XYZ01123456789"
20 PR#0

25 END

4. Type in RUN and hit the "RETURN" key. The
text in line 15 should be printed on the
teletype and control is returned to the key-
board and Video monitor

116

Line 10 activates the teletype machine routine and all "PRINT" state-
ments following it will be printed to the teletype until a PR#0 statement is
encountered. Then the text in line 15 will appear on the teletype's output.
Line 20 deactivates the printer and the program ends on Tine 25.

Conclusion

With the circuits and machine language program described in this paper
the user may develop a relatively simple serial output interface to an ASR-3
or RS-232 compatible printers. This circuit can be activated through BASIC
or monitor modes. And is a valuable addition to any users program library.

117

3.3K

J-14

+5V

|
w 2N3906 (OR EQUIV.)

150 Q
—+

OUTPUT TO TELETYPE

RESISTORS ARE I/4 WATT CARBON 8

(a) (b)
FIGURE 1 ASR-33

+12 (JUMPERED TO +I2 SUPPLY)

2N3906

4700

ON3904 OUTPUTEH
OUTPUT (-)
PIN I5 '
@ L

-12 (JUMPERED TO -I12 SUPPLY)

FIGURE 2 RS-232

118

3342 PeMeos

TELETYPE DRIVER ROUTINES

1171871977

**kkWARNING$
g2378: A9 82
23723 85 36
23743 A9 @3
23763 85 37
@378: A9 48
237A% 85 21
@37Cs AS 24
937E3 8D F8
23818 60
23828 48
23838 48
3384: AD F8
23873 CS 24
2389: 68
238A¢ BO @3
238Cs 48
238D3 A9 AO
238Fs 2C CO
2392:¢ FO @3
23943 EE F8
2397:¢ 20 Ci1
@939A: 68
2393¢ 48
239C: 90 Ee6
Q39E3 49 0D
23A3: OA
23A1¢ DO OD

1

TITLE

119

2 3k 3k 3k 3k ok 3k 3 ok ok 3k ok 3k 3k ok ok ok ok ok ok ok ok %k kK K

3 * *

4 * TTYDRIVER:? *

5 * TELETYPE OUTPUT *

6 * ROUTINE FOR 72 *

7 * COLUMN PRINT WITH %

8 * BASIC LIST *

9 * *

19 * COPYRIGHT 1977 BY:? *

11 * APPLE COMPUTER INCe. x*

12 * 11718777 *

13 * *

14 * Re WIGGINTON *

15 * Se. WOZNIAK *

16 * *

17 3k 3k 3k 3k ok 3k 3 ok ok 3k ok ok 3k ok ok ok ok ok ok ok ok %k kK K

18 WNDWDTH EQU s21

19 CH EQU %24

29 CSwL EQU 836

21 YSAVE EQU $778

22 COLCNT EQU $7F8

23 MARK EQU $CO0S8

24 SPACE EQU $CO059

25 WAIT EQU $FCAS8

26 ORG 8379
OPERAND OVERFLOW IN LINE 27

27 TTINIT: LDA #TTOUT

28 STA CSWL

29 LDA #TTOUT/256

39 STA CSWL+1

31 LDA #72

32 STA WNDWDTH

33 LDA CH

34 STA COLCNT

35 RTS

36 TTOUT PHA

37 PHA

38 TTOUTZ23 LDA COLCNT

39 CMP CH

49 PLA

41 BCS TESTCTRL

42 PHA

43 LDA #%A0Q

44 TESTCTRL: BIT RTSI

45 BEQ PRNTIT

46 INC COLCNT

47 PRNTIT: JSR DOCHAR

48 PLA

49 PHA

59 BCC TTOUT2

51 EOR #$0D

52 ASL. A

53 BNE FINISH

FIGURE 3a

PAGE: 1

'TELETYPE DRIVER ROUTINES'

3FOR APPLE-I1
3CURSOR HORIZ.
3CHAR. OUT SWITCH

3COLUMN COUNT LOC.

SPOINT TO TTY ROUTINES
3JHIGH BYTE

3SET WINDOW WIDTH
3TO NUMBER COLUMNS ONT

SWHERE WE ARE NOWe.

3SAVE TWICE
30N STACK.
3CHECK FOR A TAB.

SRESTORE OUTPUT CHAR.
3IF C SET» NO TAB

SPRINT A SPACE.

3TRICK TO DETERMINE
3IF CONTROL CHAR.

3IF NOTs ADD ONE TO CM
SPRINT THE CHAR ON TTY
SRESTORE CHAR

3AND PUT BACK ON STAC
3DO MORE SPACES FOR TA
3CHECK FOR CAR RET.
SELIM PARITY

3IF NOT CRs DONE.

TELETYPE DRIVER ROUTINES

3342 PeMes 1171871977

@3A3% 8D F8 @7 54 STA
@d3A68% A9 8A 55 LDA
23A8: 20 C1 @3 56 JSR
@23AB: A9 58 57 LDA
93AD: 20 AB FC 58 JSR
23B@: AD F8 @7 59 FINISHS LDA
93B3 FOQ 08 60 3EQ?
23B5¢ ES 21 61 S3C
93B78 E9 F7 62 SSC
23B9: 90 94 63 BCC
23BBs 69 1F 64 ADC
23BDs 85 24 65 SETCH? STA
93BFs 68 66 RETURNS PLA
23C0: 60 67 RTS13 RTS

68 * HERE IS THE TELETYPE PRINT

COLCNT
#88A
DOCHAR
#853
WAIT
COLCNT
SETCH
WVDWDTH
#8F7
RETURN
#81F
CH

@3C1s 8C 78 07 69 DOCHAR? STY YSAVE

93C4s 028 79 PHP

93C5¢ AQ @B 71 LDY #80B

23C7¢ 18 72 cLC

23C88 48 73 TTOUT3: PHA

23C9¢ B@ @5 14 BCS MARKOUT

23CBs AD 59 C@ 175 LDA SPACE

Q3CEs 90 @3 16 BCC TTOUT4

93Dds AD 58 C@ 77 MARKOUT LDA MARK

93D3¢ A9 D7 18 TTOUT4: LDA #8D7

Q3D58 48 19 DLY1: PHA

23D63% A9 20 89 LDA #8290

23D8¢ 4A 81 DLY2: LSR A

93DBs 90 FD 82 BCC DLY2

23DBs 68 83 PLA

93DCs E9 @1 84 SBC #8901

Q3DESs D@ FS 85 3NE DLY!1

Q3EQ: 68 86 PLA

Q3E18 6A 87 ROR A

Q3E2: 88 88 DEY

Q3E3¢ D@ E3 89 BNE TTOUT3

Q3ES58 AC 78 07 90 LDY YSAVE

Q3E8: 28 21 PLP

Q3E9: 60 92 RTS

*kkkkkkkSUCCESSFUL ASSEMBLY: NO ERRORS
FIGURE 3b

120

PAGES 2
3CLEAR COLUMN COUNT
3NOW DO LINE FEED

3209MSEC DELAY FOR LIB
3CHECK IF IN MARGIN
3FOR CR» RESET CH

3IF SO» CARRY SET.

3ADJUST CH

SRETURN TO CALLER
A CHARACTER ROUTINES

3SAVE STATUS.

311 BITS (1 START» XXXXXXXXXXXXXX
3BEGIN 7ITH SPACE (STXXXXXXX
3SAVE A REG AND SET FOR

3SEND A SPACE

3SEND A MARK
sDELAY 9.091 MSEC FOR
3110 BAUD

SNEXT BIT (STOP BITS R
LOOP 11 BITS.

SRESTORE Y-REG.
SRESTORE STATUS
3SRETURN

CROSS-REFERNCESTELETYPE DRIVER ROUTINES

CH 2024 0033 0039 @265
COLCNT 2718 0034 0038 0046 0054 00359
CSWL 2036 0028 0030

DLYI 2305 2085

DLY2 2308 2082

DOCHAR 2391 2047 2056
FINISH 2339 2953

MARK Cos8 207117

MARKOUT 2309 0074

PRNTIT 2391 2045

RETURN 238F 2063

RTS1 2300 2044

SETCH 2330 2060

SPACE C0s59 2075

TESTCTRL @33F 2041

TTINIT 23170

TTOUT 2332 2027 0029
TTOUT2 2384 2059

TTOUT3 23C8 0089
TTOUT4 2323 20176

WALT FCAB 0058
WNDWDTH @021 0032 0061
YSAVE 0778 0069 0099
ILEs

FIGURE 3c

121

INTERFACING THE APPLE

This section defines the connections by which external devices are
attached to the APPLE II board. Included are pin diagrams, signal
descriptions, loading constraints and other useful information.

TABLE OF CONTENTS

1. CONNECTOR LOCATION DIAGRAM

2. CASSETTE DATA JACKS (2 EACH)

3. GAME I/0 CONNECTOR

4. KEYBOARD CONNECTOR

5. PERIPHERAL CONNECTORS (8 EACH)
6. POWER CONNECTOR

7. SPEAKER CONNECTOR

8. VIDEO OUTPUT JACK

9. AUXILIARY VIDEO OUTPUT CONNECTOR

122

Figure TA APPLE II Board-Complete View

L e e I TS AT YT T s ¥ ’“W"*’“'?’"mm"w’* :; R ARSI e ST i

e
n

-, S A T r-.. ——

it Ry - ;4,..-..--.,--L

LRAILAR]

LR S
|

1311t

| ERUAR]

4
”

S TR e g ey

B it

AR -

e

oty

e N NS I
_' teeptgaere

P TSI T ey TR

1
123

Figure 1B Connector Location Detail APPLE Il PC BOARD
TOP VIEW CASSETTE DATA IN

CASSETTE DATA OUT
PERIPHERALS ﬁ

VIDEO OUTPUT

4 N\
0 1 2 3 4 5 6 7
o o o o o o o ol
KIS k14
POWER m!
oozz_mﬁmqom I~ .. AUXILIARY
K], .. T [—=-~— VIDEO OUTPUT
[EH| J14B CONNECTOR
K1
Q
: UL]
o
[a1]
g
F L
o
% GAME 1/0
Q CONNECTOR
)
< o o o o o o o o .
@ J14
T J2 Ja J5 J6 Js Jo J11 J12 T
| 1
| |
B
_M_A| SPEAKER
CONNECTOR
A7 B14A -
KEYBOARD o<
CONNECTOR °3
A w o
FENS)
° IMJP
1 2 3 4 5 6 7 8 9 10 1 12 13 14 =%

Front Edge of PC Board
CONNECTOR LOCATIONS

124

CASSETTE JACKS

A convenient means for interfacing an inexpensive audio cassette
tape recorder to the APPLE II is provided by these two standard
(3.5mm) miniature phone jacks located at the back of the APPLE II
board.

CASSETTE DATA IN JACK: Designed for connection to the "EARPHONE"
or "MONITOR" output found on most audio cassette tape recorders.
V.\=1Vpp (nominal), Z.,=12K Ohms. Located at K12 as illustrated in
F%gure IN

CASSETTE DATA OUT JACK: Designed for connection to the "MIC" or
"MICROPHONE" input found on most audio cassette tape recorders.
=25 mV into 100 Ohms, Z =100 Ohms. Located at K13 as illustrated

Ru¥n Figure 1. ouT

GAME 1/0 CONNECTOR

The Game I/0 Connector provides a means for connecting paddle controls,
1ights and switches to the APPLE II for use in controlling video games,
etc. It is a 16 pin IC socket located at J14 and is illustrated in
Figure 1 and 2.

Figure 2 GAME I/0 CONNECTOR

TOP VIEW
(Front Edge of PC Board)

+5V 1 |e 16 N.C.
Swo 2 15 ANO
Sw1 3 14 AN1

SW2 4 13 AN2

C0O40 STB 5 12 AN3
PDLO 6 11 PDL3
PDL2 7 10 PDL1

GND 8 9 N.C

LOCATION J14

125

SIGNAL DESCRIPTIONS FOR GAME I/0

ANO-AN3:
Cp4p STB:
GND:

NC:
PDL@-PDL3:
SWR-SW2:
+50:

8 addresses (CP58-CA5F) are assigned to selectively
"SET" or "CLEAR"™ these four "ANNUNCIATOR" outputs.
Envisioned to control indicator 1lights, each is a
74LSxx series TTL output and must be buffered if used
to drive lamps.

A utility strobe output. Will go low during @, of a
read or write cycle to addresses CP4@-CP4F. This is
a 74LSxx series TTL output.

System circuit ground. 0 Volt Tine from power supply.
No connection.

Paddle control inputs. Requires a @-15@0K ohm variable
resistance and +5V for each paddle. Internal 100 ohm
resistors are provided in series with external pot to
prevent excess current if pot goes completely to zero
ohms.

Switch inputs. Testable by reading from addresses
CA61-CA63 (or CA69-CA6B). These are uncommitted
74LSxx series inputs.

Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than T00mA.

KEYBOARD CONNECTOR

This connector provides the means for connecting as ASCII keyboard
to the APPLE II board. It is a 16 pin IC socket located at A7 and is
illustrated in Figures 1 and 3.

Figure 3 KEYBOARD CONNECTOR
TOP VIEW
(Front Edge of PC Board)
+5v 1 [e 16 N.C.
STROBE 2 15 12V
RESET 3 14 N.C.
N.C. 4 13 B2
B6 5 12 B1
B5 6 11 B4
B7 7 10 B3
GND 8 9 N.C.
LOCATION A7

126

SIGNAL DESCRIPTION FOR KEYBOARD INTERFACE

B1-B7: 7 bit ASCII data from keyboard, positive logic (high Tevel=
"1"), TTL Togic levels expected.

GND: System circuit ground. @ Volt line from power supply.
NC: No connection.
RESET: System reset input. Requires switch closure to ground.

STROBE: Strobe output from keyboard. The APPLE II recognizes the
positive going edge of the incoming strobe.

+5V: Positive 5-Volt supply. To avoid burning out the connector
pin, current drain MUST be less than 10QmA.

1
—
N
<<

Negative 12-Volt supply. Keyboard should draw less than
50mA.

PERTPHERAL CONNECTORS

The eight Peripheral Connectors mounted near the back edge of the
APPLE II board provide a convenient means of connecting expansion
hardware and peripheral devices to the APPLE II I/0 Bus. These are
Winchester #2HW25C@-111 (or equivalent) 5@ pin card edge connectors
with pins on .10" centers. Location and pin outs are illustrated in
Figures 1 and 4.

SIGNAL DESCRIPTION FOR PERIPHERAL I/0

AD-A15: 16 bit system address bus. Addresses are set up by the
6562 within 36@nS after the beginning of @,. These lines
will drive up to a total of 16 standard TTL Toads.

DEVICE SELECT: Sixteen addresses are set aside for each peripheral
connector. A read or write to such an address will
send pin 41 on the selected connector low during @
(5p@PnS). Each will drive 4 standard TTL loads.

DB-D7: 8 bit system data bus. During a write cycle data is
set up by the 65@2 Tess than 3@@nS after the beginning
of ﬂz. During a read cycle the 6502 expects data to
be ready no less than 10@nS before the end of #,.
These lines will drive up to a total of 8 total low
power schottky TTL Toads.

127

DMA OUT:

— [<p]
= | =
o e

INT IN:

INT OUT:

I/0 SELECT:

I/0 STROBE:

IRQ:

RDY:

Direct Memory Access control output. This line has a
3K Ohm pullup to +5V and should be driven with an
open collector output.

Direct Memory Access daisy chain input from higher
priority peripheral devices. Will present no more
than 4 standard TTL loads to the driving device.

Direct Memory Access daisy chain output to Tower
priority peripheral devices. This line will drive
4 standard TTL Toads.
System circuit ground. @ Volt Tine from power supply.
Inhibit Line. When a device pulls this line low, all
ROM's on board are disabled (Hex addressed D@@P through

FFFF). This line has a 3K Ohm pullup to +5V and
should be driven with an open collector output.

Interrupt daisy chain input from higher priority peri-
pheral devices. Will present no more than 4 standard
TTL loads to the driving device.

Interrupt daisy chain output to lower priority peri-
pheral devices. This line will drive 4 standard TTL
Toads.

256 addresses are set aside for each peripheral connector
(see address map in "MEMORY" section). A read or write
of such an address will send pin 1 on the selected
connector Tow during §, (500nS). This line will drive

4 standard TTL Toads.

Pin 20 on all peripheral connectors will go lTow during
@,, of a read or write to any address C8@@-CFFF. This
17ne will drive a total of 4 standard TTL Toads.

Interrupt request line to the 6502. This line has a
3K Ohm pullup to +5V and should be driven with an open
collector output. It is active low.

No connection.

Non Maskable Interrupt request Tine to the 6502. This
Tine has a 3K Ohm pullup to +5V and should be driven with
an open collector output. It is active low.

A IMHz (nonsymmetrical) general purpose timing signal. Will
drive up to a total of 16 standard TTL Toads.

"Ready" Tine to the 65@2. This line should change only
during @7, and when Tow will halt the microprocessor at
the next READ cycle. This 1line has a 3K Ohm pullup to

+5V and should be driven with an open collector output.
Reset 1ine from "RESET" key on keyboard. Active Tow. Will
drive 2 MOS loads per Peripheral Connector.

128

o
~
=]|

USER T:

=
l..

~
=

+ |+
o1 —
< |I’\)

<

1 1
— o1
N <
<

READ/WRITE T1ine from 6502. When high indicates that a read
cycle is in progress, and when lTow that a write cycle is
in progress. This Tine will drive up to a total of 16
standard TTL loads.

The function of this line will be described in a Tater
document.

Microprocessor phase V clock. Will drive up to a total of
16 standard TTL Toads.

Phase 1 clock, complement of @,. Will drive up to a total
of 16 standard TTL Tloads.

Seven MHz high frequency clock. Will drive up to a total
of 16 standard TTL Toads.

Positive 12-Volt supply.
Positive 5-Volt supply

Negative 5-Volt supply.
Negative 12-Volt supply.

POWER CONNECTOR

The four voltages required by the APPLE II are supplied via this
AMP #9-35@28-1,6 pin connector. See location and pin out in Figures

1 and 5.

PIN DESCRIPTION

[<p}
=
O

(2 pins) system circuit ground. @ Volt line from power
supply.

Positive 12-Volt Tine from power supply.
Positive 5-Volt line from power supply.
Negative 5-Volt line from power supply.

Negative 5-Volt line from power supply.

129

PERIPHERAL CONNECTORS

Figure 4 (EIGHT OF EACH)

TOP VIEW
PINOUT (Back Edge of PC Board)

25 +5V

24 DMA OUT
23 INT OUT

22 DMA

21 RDY

20 1/0 STROBE

“NDOWhOTON®O
>
w

I1/0 SELECT

(Toward Front Edge of PC Board)
LOCATIONS J2 TO J12

Figure 5 POWER CONNECTOR

TOP VIEW
PINOUT (Toward Right side of PC Board)

—

(9]

(BLUE/WHITE WIRE) -12V - 5V (BLUE WIRE)

I_I

(ORANGE WIRE) +5V +12V (ORANGE/WHITE WIRE)

]

@@= 0w ©
On O0h OO

(BLACK WIRE) GND GND (BLACK WIRE)

LOCATION K1

130

SPEAKER CONNECTOR

This is a MOLEX KK 10@ series connector with two .25" square pins on
.10" centers. See Tocation and pin out in Figures 1 and 6.

SIGNAL DESCRIPTION FOR SPEAKER

+5V: System +5 Volts
SPKR: Output Tine to speaker. Will deliver about .5 watt into

8 Ohms.

Figure 6

SPEAKER CONNECTIONS
PINOUT

G o

o X

- 2 5

Sv Eid

> o

< o

(@)]

— O

e=o Ly

Right Edge of PC Board

LOCATION B14A

VIDEQ QUTPUT JACK

This standard RCA phono jack Tocated at the back edge of the APPLE II
P.C. board will supply NTSC compatible, EIA standard, positive composite

video to an external video monitor.

A video Tevel control near the connector allows the output Tevel to be
adjusted from @ to 1 Volt (peak) into an external 75 OHM Toad.

Additional tint (hue) range is provided by an adjustable trimmer capacitor.

See locations illustrated in Figure 1.

131

AUXTLIARY VIDEO OUTPUT CONNECTOR

This is a MOLEX KK 100 series connector with four .25" square pins
on .10" centers. It provides composite video and two power supply
voltages. Video out on this connector is not adjustable by the on
board 200 Ohm trim pot. See Figures 1 and 7.

SIGNAL DESCRIPTION

GND: System circuit ground. @ Volt line from power supply.

VIDEQ: NTSC compatible positive composite VIDEO. DC coupled
emitter follower output (not short circuit protected).
SYNC TIP is @ Volts, black level is about .75 Volts, and
white Tevel is about 2.0 Volts into 470 Ohms. OQutput level
is non-adjustable.

+12V: +12 Volt Tine from power supply.
+5V: -5 Volt line from power supply.
Figure 7 AUXILIARY VIDEO OUTPUT CONNECTOR
PINOUT @
o +12v o
.
(o] -5V 4
| o
(o] VIDEO @
. ()]
@] GND =
4
o
P

Right Edge of PC Board

LOCATION J14B

132

INSTALLING YOUR OWN RAM

THE POSSIBILITIES

The APPLE IT computer is designed to use dynamic RAM chips organized
as 4096 x 1 bit, or 16384 x 1 bit called "4K"™ and "16K" RAMs
respectively. These must be used in sets of 8 to match the system
data bus (which is 8 bits wide) and are organized into rows of 8.
Thus, each row may contain either 4096 (4K) or 16384 (16K) Tocations
of Random Access Memory depending upon whether 4K or 16K chips are
used. If all three rows on the APPLE II board are filled with 4K

RAM chips, then 12288 (12K) memory Tocations will be available for
storing programs or data, and if all three rows contain 16K RAM
chips then 49152 (commonly called 48K) locations of RAM memory will
exist on board!

RESTRICTIONS

It is quite possible to have the three rows of RAM sockets filled with
any combination of 4K RAMs, 16K RAMs or empty as Tong as certain rules
are followed:

1. ATl sockets in a row must have the same type (4K or 16K)
RAMs .

2. There MUST be RAM assigned to the zero block of addresses.

ASSIGNING RAM

The APPLE II has 48K addresses available for assignment of RAM memory.
Since RAM can be installed in increments as small as 4K, a means of
selecting which address range each row of memory chips will respond
to has been provided by the inclusion of three MEMORY SELECT sockets
on board.

Figure 8

MEMORY SELECT SOCKETS

TOP VIEW

PINOUT
(0000-OFFF) 4K "0" BLOCK1 [e 14 RAM ROW C
(1000-1FFF) 4K "1" BLOCK 2 13 RAM ROW D
(2000-2FFF) 4K "2" BLOCK 3 12 RAM ROW E
(3000-3FFF) 4K "3" BLOCK 4 11 N.C.
(4000-4FFF) 4K "4" BLOCK 5 10 16K "0" BLOCK (0000-3FFF)
(5000-5FFF) 4K "5" BLOCK 6 9 16K "4" BLOCK (4000-7FFF)
(6000-EFFF) 4K "6" BLOCK7 8 16K "8" BLOCK (8000-BFFF)

LOCATIONS D1, E1, F1

133

MEMORY

TABLE OF CONTENTS

1. INTRODUCTION

2. INSTALLING YOUR OWN RAM

3. MEMORY SELECT SOCKETS

4. MEMORY MAP BY 4K BLOCKS

5. DETAILED MAP OF ASSIGNED ADDRESSES

INTRODUCTION

APPLE II is supplied completely tested with the specified amount of
RAM memory and correct memory select jumpers. There are five different
sets of standard memory jumper blocks:

1. 4K 4K 4K BASIC
2. 4K 4K 4K HIRES
3. 16K 4K 4K

4. 16K 16K 4K

5. 16K 16K 16K

A set of three each of one of the above is supplied with the board.
Type 1 is supplied with 4K or 8K systems. Both type 1 and 2 are
supplied with 12K systems. Type 1 is a contiguous memory range for
maximum BASIC program size. Type 2 is non-contiguous and allows 8K
dedicated to HIRES screen memory with approximately 2K of user BASIC
space. Type 3 is supplied with 16K, 20K and 24K systems. Type 4
with 30K and 36K systems and type 5 with 48K systems.

Additional memory may easily be added just by plugging into sockets
along with correct memory jumper blocks.

The 6502 microprocessor generates a 16 bit address, which allows

65536 (commonly called 65K) different memory Tocations to be specified.
For convenience we represent each 16 bit (binary) address as a 4-digit
hexadecimal number. Hexadecimal notation (hex) is explained in the
Monitor section of this manual.

In the APPLE II, certain address ranges have been assigned to RAM

memory, ROM memory, the I/0 bus, and hardware functions. The memory
and address maps give the details.

134

MEMORY SELECT SOCKETS

The Tocation and pin out for memory select sockets are illustrated
in Figures 1 and 8.

HOW TO USE

There are three MEMORY SELECT sockets, Thcated at D1, E1 and F1
respectively. RAM memory is assigned to various address ranges by
inserting jumper wires as described below. All three MEMORY SELECT
sockets MUST be jumpered identically! The easiest way to do this
is to use Apple supplied memory blocks.

Let us learn by example:

If you have plugged 16K RAMs into row "C" (the sockets Tocated at
C3-C10 on the board), and you want them to occupy the first 16K of
addresses starting at 0000, jumper pin 14 to pin 1@ on all three
MEMORY SELECT sockets (thereby assigning row "C" to the 0000-3FFF
range of memory).

If in addition you have inserted 4K RAMs into rows "D" and "E", and
you want them each to occupy the first 4K addresses starting at 4000
and 5000 respectively, jumper pin 13 to pin 5 (thereby assigning row
"D" to the 4000-4FFF range of memory), and jumper pin 12 to pin 6
(thereby assigning row "E" to the 500@-5FFF range of memory). Remember
to jumper all three MEMORY SELECT sockets the same.

Now you have a large contiguous range of addresses filled with RAM
memory. This is the 24K addresses from Q00@-5FFF.

By following the above examples you should be able to assign each

row of RAM to any address range allowed on the MEMORY SELECT sockets.
Remember that to do this properly you must know three things:

1. Which rows have RAM installed?

2. MWhich address ranges do you want them to
occupy?

3. Jumper all three MEMORY SELECT sockets the
same!

If you are not sure think carefully, essentially all the necessary
information is given above.

135

secondary page.

LOMEM to location

0800.

Memory Address Allocations in 4K Bytes
0000 text and color graphics 8000
display pages, 6502 stack,
pointers, etc.
1000 9000
2000 high res graphics display Ac0o
primary page
"
3000 " BOOO
"
”
"
cooo addresses dedicated to
4000 high res, graphicse display
secondary page hnrdwaxe functions
n
n
"
5000 " D000 ROM sosket DO: spare
n
" ROM socket D8: spare
n
n
8000 E000 ROM soﬁket EO: BASIC
ROM socket E8: BASIC
"
7000 F000 ROM socket FO: BASIC
utility
ROM socket F8: monitor
Memory Map Pages @ to BFF
HEX USED
ADDRESS(ES) | BY USED FOR COMMENTS
PAGE ZERO
0000-001F UTILITY register area for '"'sweet 186"
16 bit firmware processor.
0020-004D MONITOR
O04E-004F MONITOR holds & 16 bit number that
is randomized with each key
entry.
0050-0055 UTILITY integer multiply and divide
work space.
0055-00FF BASIC
OOFO- OOFF UTILITY floating point work space.
PAGE ONE
0100-01FF 6502 subroutine return stack.
PAGE TWO
0200-02FF character input buffer.
PAGE THREE
03F8 MONITOR Yc (control Y) will cause
a JSR to this location.
O3FB NMI's are vectored to this
location.
0O3FE-O3FF IRQ's are vectored to the
address pointed to by these
locations,
0400-07FF DISPLAY text or color graphics
primary page.
0800-~-OBFF DISPLAY text or color graphics BASIC initializes

136

I/0 and ROM

Address Detail

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

C0o0X Keyboard input. Keyboard strobe appears in bit
7. ASCII data from keyboard
appears in the 7 lower bits.

C01X Clear keyboard strobe.

C02X Toggle cassette output.

C03X Toggle speaker output. Output strobe to Game I/0

- connector.

C04X "C040 STB"

C050 Set graphics mode

C051 " text "

C052 Set bottom 4 lines graphics

0053 n " n n text

C054 Display primary page

C055 " secondary page

C056 Set high res. graphics

C057 " color "

C058 Clear "ANO" Annunciator 0 output to
Game I/0 connector.

C059 Set "

CO5A Clear "AN1" Annunciator 1 output to
Game I/0 connector.

CO5B Set "

C05C Clear "AN2" Annunciator 2 output to
Game I/0 connector.

C05D Set "

CO5E Clear "AN3" Annunciator 3 output to
Game I/0 connector.

CO5F Set "

137

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS

C060/8 Cassette input State of "Cassette Data In"
appears in bit 7.

input on

C061/9 "Sw1" State of Switch 1 A\ Game
I/0 connector appears in bit 7.

C062/A "Sw2" State of Switch 2 input on
Game I/0 connector appears
in bit 7.

C063/B "Sw3" State of Switch 3 input on
Game I/0 connector appears
in bit 7.

c064/C Paddle 0 timer output State of timer output for
Paddle 0 appears in bit 7.

C065/D "1 " " State of timer output for
Paddle 1 appears in bit 7.

C066/E "2 " " State of timer output for
Paddle 2 appears in bit 7.

C067/F "3 " " State of timer output for
Paddle 3 appears in bit 7.

Co7X "PDL STB" Triggers paddle timers
during ®2.

C08X DEVICE SELECT O Pin 41 on the selected
Peripheral Connector goes

C09X " 1 low during Qz.

COAX " 2

COBX " 3

01010).¢ " 4

CODX " 5

COEX " 6

COFX " 7

Cl10X " 8 Expansion connectors.

Cl1X " 9 "

C12X " A "

138

HEX

ADDRESS ASSIGNED FUNCTION COMMENTS
C13X DEVICE SELECT B !
C14X " C !
C15X " D !
C1e6X " E !
C17X " F !
C1XX I/0 SELECT 1 Pin 1 on the selected
Peripheral Connector goes
C2XX " 2 low during ¢2.
C3XX " 3 NOTES :
1. Perpheral Connector,

C4XX " 4 0 does not get this

signal
C5XX " 5

2. I/0 SELECT 1 uses the

C6XX " 6 same addresses as

DEVICE SELECT 8-F
C7XX " 7
C8XX " 8, I/0 STROBE Expansion connectors.
CgXX n 9 , "
CAXX " A "
CBXX " B, "
CCXX " C, "
CDXX " D, "
CEXX " E, "
CFXX " F, "
DOOO-D7FF ROM socket DO Spare.
D800-DFFF " " D8 Spare.
E000-E7FF " " EO BASIC.
E800-DFFF " " E8 BASIC.
FO00-F7FF " " FO 1K of BASIC, 1K of utility.
F800-FFFF " " F8 Monitor

139

SYSTEM TIMING

SIGNAL DESCRIPTIONS

14M: Master oscillator output, 14.318 MHz +/- 35 ppm. A1l other
timing signals are derived from this one.

M: Intermediate timing signal, 7.159 MHz.

COLOR REF: Color reference frequency used by video circuitry, 3.580 MHz.

Do Phase P clock to microprocessor, 1.023 MHz nominal.

Dq: Microprocessor phase 1 clock, complement of @,, 1.023 Mhz
T nominal.

Do Same as @,. Included here because the 6502 hardware and

programming manuals use the designation @, instead of @,.

Q3: A general purpose timing signal which occurs at the same
rate as the microprocessor clocks but is nonsymmetrical.

MICROPROCESSOR OPERATIONS

ADDRESS: The address from the microprocessor changes during 0,,
and is stable about 300nS after the start of 0;.

DATA WRITE: During a write cycle, data from the microprocessor
appears on the data bus during @,, and is stable about
30@nS after the start of 0,.

DATA READ: During a read cycle, the microprocessor will expect
data to appear on the data bus no Tess than 100nS prior
to the end of @,.

SYSTEM TIMING DIAGRAM

TIMING CIRCUITRY
BLOCK DIAGRAM TIMING RELATIONSHIPS

MASTER
OSCILLATOR e Juiiudiru i i

—

TIMING @

CIRCUITRY
—Cooormery [[L[L[LT LT LI 1

—<o0> | | | |
—<e1 > | | | I

o2 | I I I
@&] A e N e IR mn I

140

REFERENCE SYNG — SYNC OUT BUS —| VIbEO
OSCILLATOR COUNTER ~ GENERATOR 'y " COMPOSITE VIDEO OUT
AND —
SYSTEM — APE —
TIMING —
» AUXILIARY VIDEO OUT
FIG. S-3 FIG. S-4 — | FiG. s-11
TIMING BUS — — TIMING BUS
) [TT TT 1
/ <~— DATABUS —
([T T TT 11
ADDRESS BUS —
} (A)
1]
MPU > ! !
AND — =
BUS 51 13| [4
DRIVERS 100 — 8K-12K ol |<| IS P?\éV\}ER IN
L ROM 9] TO ALL SELECTIONS | *+
(]] mEMoRY z| |3 |3 < +5V
— | BASIC | [al |o -5V
J L AND Yol -12C
ADDRESS BUS — | SYSTEM IS < GND
D [MONITOR '5 a
<
T _DATAOUT <=1 pg 55
8
[a]
<l |t
3l |}
a 4K/16K 8 DECODED
o ——1 RAM — PERIPERAL
)3 SELECT L IF/’(E)R'PHERAL CONNECTORS
-~ — < e ‘.
N = - |
g = =
T FIG. S-6) h— R
)
| RAM t FIG. S-9
|| row !
SELECT w t 0
- [a] » -]
5| |o A @
L 4K - 48K of |3 2 <
RAM < a %) w =
DATAIN = | \iEMORY 4| |a @ D e
-— — S| |9 o < l
FIG. S-2 V& (% a w
2] —_— I a <
o] g (&) <
o FIG. S-8 al |
O - — t
P4
1 s t RAM 3 l
o ol |E ADDRESS o ON-BOARD 4% GAME I/0
=] — |
2 2 SELECT z \ —1 o T
< 7 RAM ® N 4 CASSETTE IN
w - [[
o o ADDRESS — ;
9 . = | mux -~ J . » CASSIET'II'E out
< —
4 KEYBOARD
\ — -— ADDRESS DECODE -— [1
FIG. S-7 FIG. S-10 » SPEAKER
\ L
_ <— DATAOUT
.
_ ~— DMABUS

FIGURE S-1 APPLE Il SYSTEM DIAGRAM

141

+5V

8797 s
e (PINS 7 & 15 TRISTATE)
11 112 9 ALT—
2 { ADO {)
s AO IRQ o IRQ) 30
5 4 10
 (AD1 Ha4 At i 3.3K FROM
> Me . NMi NMI) 29 PERIPHERAL I/O’s
4 AD2 H5 E A2 RAO1 SEE FIG. S-9
9 10 12 2 3.3K
5 { AD3 : {)
e E A3 RDY AT RDY) 21
7 6 13 LAM_>
6 C AD4 A4
H4 E |40 3.3K FROM KEYBOARD AND
RES { RES) 31
7 { AD5 912 141 a5 RAOT " PERIPHERAL 1/0’s
H3 E ~ SEE FIG. S-9 & S-11
11 112 15 33 3_A143.3K
8 A6
AD6 e E DO e { DAO) 49
9 (AD7 ¢ 161 a7 2
SYSTEM ne E
ADDRESS 4 10 { AD8 2dE 71 ne o1 |32 = (DA1) 48
H3 H10
BUS 3 2 18 2
11 { AD9 A9
"3 E MPU 31 13 12
9 Jq10 19 6502 {DA2)
Al D2 47
12 (AD10 H4E 0 1o DA2
11 Jq12 20 4
13 A11
AD11 ” E o
30
14 (AD12 0 2 2] a2 b3 {DA3) 46 | 1nisTATE
3E 5 23 SYSTEM
15 {AD13 T A13 DATA
TSE 14 24 D4 45 BUS
16 (AD14 Al4
B
17 ({AD18 13 14 25 A15
H4
(@)
~
FROM PERIPHERAL 1/0’s D6 43
SEE FIG. S-9
22
40 D0 D7 42
FROM REFERENCE 1 /
OSCILLATOR AND TIMING S0_Vss Vss
SEE FIG. $-3 28| 21 1 (PINS 1 & 15 TRISTATE)
10 C14 \ L
~ 9 4
29 (INH)
36 @
. T
AVAILABLE ON
SYSTEM TIMING
. 0 Py e
39 { USER 1 LDPS
20 (10 SEL) NOT AVAILABLE ON
50 PIN PERIPHERAL >
18 1/0 CONNECTOR COLOR REF
) ~

FIGURE S-2 MPU AND SYSTEM BUS

142

ONINIL W3LSAS ANV HOLVT1IOSO IONIHI43H €-S IHNOIL

Womr It
2 \
oL
- __H__ ZHNBLE VL
E1IN] ||_|
1O

10001X
¢0 892¥Ne 1O

AG+ AG+
AZL+
Z
on - HNVPE
:% 8 8 FH _
20 dND aNo _ v3 |ﬂ M é
20 €a qazl 0s 8L_‘to o
ot g et vt aND 10 O0p
434 H0109 L ol @y 9el | olad ao I
do €618V 6 ot
(o) e 5 au | o (55 =
9 (NL)— i S zal;; %0 S (e0> 70 .
ow@t_? 1a oo r =
z € r | siispL 9| g+ selsv. |
=1*° (sda1) I S er[%° S E
o zv
or {0 » —{eo 14 ¢ z SEM ed
(oL A% oo |° Z & e oG
090,
10 00A rera)—(z+af;; Sva 00 ed (@/1)
N_ E_ 5 St z 0¢svL
§140S AG+

(¥r1)

98SY.

A - m_.n_ 3dH
-8 "'Old
1LNNOD ONAS

) [0}-E|

N

v

143

FRO
SYSTEM {(DPS
TIME

CLOCK IN
M

FIG. S-3

SOFT 5 45V
16 SYNC OUT
v,
“fcep o HO
10
1% p1g o [D14-13) H1
CLR
3 Q2 12 D14-12) H2
PO
11
4 P1 Q3 D14-11) H3
5 74LS161
P2
1 p3
= 2 9
CL PE JO—
TC GND
15 J_a
SOFT 5 45V)
Tm 10 |7
1| voc CET cEP | 9
O_
CLR PE
5|py D13 o |2 D13-12) APE
3 14
PO Q0 D13-14) H4
p 74LS161 13
P1 al D13-13) H5
4 11
= Q3 D13-11) VA
2|cL P3| 6
TC GND
15 J_a
+5V N
Le 10 |7
s vec CET CEQPO 14 51274 VB
1o D12 ot} D12-13) VC
A az2 D12-12) VO
SOFT 5 74LS161
1 11
«— cLr Q3 D12-11) V1
4] p1
L 9
~ _2lcL PEJO————
TC GND
15 J_e
-5V =
Tm 10 |7
3| voc ceET cEP | 9
PO PE [P
1py D1 T L9l>08—
5] p2 ao |4 D11-14) V2
SOFT5 74LS161 13 -
« ! cr a1 D11-13) V3
e Q2 |2 D11-12) V4
~ 2le il EAEENYS
GND

J:

144

FIGURE S-4 SYNC COUNTER

N
A

™
<

AN
~

[Co)
<

©
<

N
~

=)
I

(<)
<

AHOWIN WOY S-S 3dNOId

/1)
80ST¥L

Z1
S
5\ tH

9l

<€1Lav) ¢
LLav) s
L Lav) s

T l 5
T gy nond o”_w Mm_ M< M< ”< mmm_ NH.m_ VA
$10313S dIHO 1 3 XN 0/I 193d
&._| a_ QN_ 0z p——>—(G}-2td) 2LH OL
aNo €50 15D
o 00 |-—(ET Y 8cLSTVL 2Ld -
owv [;—@Lav) 2 Rchd e €2 2 sz 9c 1z oop |7t
oa m<ﬂa: ay a9 uf o 69 N.Sh
ca 8v ec E ot ASH e e e \.r .m...f
1y [—<Lav) 6 :
L H H
va o izfoz| sefoz| 12oz| r2foz| s2foz| r2foe] :
9V 8 : :
ey MG m |
ga WOH sv[—gav) m oa | [ea | |oa 83 od || e
g9 €6 - .@ 9
za : : -5
ev m|a g : 3] s o) o3| 3] s H S8 911398
: ol |2g ollo ol|lg —SNd WILSAS
1a av[s—<eav) » : 12112121 12]]2 :
7 (Lav) ¢
o —oavy @ m m
oy Mz © o [eea| |ed]| | 8d| | 94| [saf| ed]|[
vz
AR AVHHY AHOW3IN WOH

TIVLIA LNAONId WOH W Frrmrrmmmmmmmmssssssmmssssssmmsmssss e

145

103713S INVH M9I/MP 9-S 3HNOIL

SvO

SVO Mv
J = Py
SVO Y91 . L
9 anNo e3
8 2| 2 A Xv v
4 Em = 00
6
|| cLav
0 onid |° 12 o 4)
o Ev_mwn_v_“,_v_—.“u_., @ eG1SI7L i 210 40 477VH 43H10 HO4 £-S 'OId 338 N—,D<v
g-s'ol4 I MOY VY (21-H 21 e | 10 E = = = ’
SVO amod wvd (gL-Ld = L4 Em oon [0 m._| &H
o mod vy (vL-1d) — — 7] avo
NG+ H
L -
_.o.z - - A PZ (5 POL[; 9-€10) 1gH
$D MHP/9V M9l of o £528L roS e
a1 .A 9-v1d) z 35Vd
) G- ano a3 oz N
- - — 9 3 [0 2L HHo
- -
v I - y4 PLL o €1-c1d) oA
- S G
: i : g oy 51 (a118) saum
on1d [¢ 8 ’ vz
5| "3dwne o0 6€LsIvL = ?ﬁ
MO LMY v | jl_
g-soly IMod vy (B3 ——— = T o 9 “Em 8| sLH v
SO a Mo Wvd (E1-13 — I T T oop &[5 ano 3 aot (Giav>
| ~1 L
o mod Wvd (vi-13 ~ — H ,ﬁé AT fes
G+
13s mom:om w_,;E T I G)
8l st ¢ v [—————<z1av) »
8 aNo a3 e3 oz sf———<1o)y o
s i e 5 ; (o)
y 162S7L
» Em 779 ool
6
- —o g Pz
01-S 'OI4 o 5nid ° IAIf|A| - 6ELSIVL o ¢ vo!
19313S or] €3dwnr sH Y91 29 g az
30HNOS V1va o/l Aoy 1| SO MY e € ‘
QUVOE-NO 6 2L B 2 9 c3 e
Gi-28 ‘99 OL B TR I 59 v] 7| %%
9-cv 8 | —o) v
13s vy cl vi A 14 00p c felo) }
- o m 91 m
l_ ‘O°'N ,—>m+ ,_\>m+

SL-€1d) aaM

M/d v 8l

146

e A

+5V

~

7 (E13-7) A2

9 (E13-9) A5

S GELY

>—(E12:9) A4

S0 S1 V,
«pr 4 cc
D” SOURCES ARE Ho (D14-18—>*] 12
FROM SYNC COUNT 3
FIG S-4 2F— ” 13a E1s
H1 12b za
6] 10 74LS153
a
7 {AD5) 51 1a Zb
0] 10b
7] b
s (AD6)—>H >
m Ea Eb GND
+5V 1 15 |8
Tm 4
H3 A1) H WL
-m N 3 E14
Ha h2 10 4| SO S1 Vee
SCREEN 4] a3 3 H2 (D14-12—>—{2a
ADDRESS | V3 74L5283 + (ap2) 1
FROM Cco 4 @ 12 E12
SYNC i 2o 12b Za
CONT | v4 (D111 " : | s
FIG S-4 B4 ; (a03) 6| 74Ls153
50116 15 B3 21 . 10a
H5 (D13-13) >0 i W 6 -—>— la zb
N~
9 10
SOFT 5<% &1 C4[=— N.C. V2 lob
GND 11 (aD® o
J_s Ea Eb GND
= 7 015 |8
+5V
40 (0)
14 |2 T16
S0 S1 Vcgc
45V vo (Diz-12—>—*| 22
3
9 13a
; Vee V1 I2b za
HIRES (B11-6 ————>—'s . o 13 o
He s 3 c12 7415153
Ma 4 6
VA (D13-11) za 10a
FIG S-4 74L5257 5
VB 11b (1/2) 12 I1a Zb
FIG S-4
1 i0b 2| %1 10
c11 1| 116
PAGE 2 (F14-6) T>02 21 10a 8 Ea Eb GND
FIG S-10 E
74LS04 1 Y15 |8

(1/5)

Ea GND
N

* SEE FIG. S-6 FOR OTHER HALF OF C12

FIGURE S-7 RAM ADDRESS MUX

147

TO

RAM
ADDRESS
LINES

FIG S-8

FROM 4K/16K SELECT

FIG. S-6
4 N\
ROW C ROW C ROWD ROWD ROWE ROWE
CAS CS/A6 CAS CS/A6 CAS CS/A6

(F1-14) (E1-14) (F1-13) (E1-13) (F1-12) (E1-12)

_ , 15 13) 15 13 , 15 13
o @D~ -4
C3 Ram D3 Ram B3 Ram L S
14 14 14 55 ~
|15 73| |75 73| |15 73| a2 DLO
2 2 2
o @yt -2
(DA C4 D4 pan E4 5, b
72 74 74 Q4 DL1
, 15 13] , 15 i3] , lis 1] 7aLs174 |
47 L~ Q1 DL2
or2 y—= ¢s RAM D5 paw E5 pam . ——(DL2)
14 14 14 ,
15 13] |15 13] |15 13| Q2 DL3
2 2 2
46 (DA3 y—= g RAM | D6 pam E6 pam 6
gﬁm 14 74 73 D2 | ock LATCHED
IN 15 13| |15 13| |15 13| [0 BQQAA
2 2 2
45 (DA4 y—> — ouT
C7 Rram D7 Ram E7 Rram L
14 14 14 B8 0
15 13] |15 13] |15 13] Q3 DL4
2 2 2
“ -2
cs D8 E8 13
RAM RAM RAM D4 12
14 14 14 Q4 DL5
|15 13| |15 13| |15 13| raLstra
2 2 2
s @4 = o
C9 Ram D9 pam B9 Rram “1p1
14 14 14 7
15 13] 15 13] |15 13] Q2 DL7
2 2 2 ~
12 (@T—] -
L C10 o [| D10 gam E10 pam 51 b cLock
14 14 14 -
e RAS
A0 10
E11-7 RAM PINOUT DETAIL
(EreD)—ALL
FROM (Fan)—— 212 5V <—vgs anD P
A3 7 =
ADDRESS E11-9 FROM SYSTEM —2{ bi CAS 75 DECODED BY ROW
MUX A4 6 DATABUS 3 14
SEE FIG. -7 E2zD—" . s —rw) TO LATCHES
E13-7 —41 RAs 26 2~ DECODED BY ROW
~ +12V<_8 _5 A54K/16K i
_5V(—9 6 A4 RAM 11
—2 At
GND 16 EN ol
v 1] 8 9
13 +12Ve—Vpp Veo = +5v
18 m RAM 3
38 mﬂ 11 RIW

FIGURE S-8 4K TO 48K RAM MEMORY WITH DATA LATCH

148

JI19071 TOHLNOD ANV LNONId HOLO3ANNOD O/1 TVId3HdId3d 6-S JHNOIL

2LH Woud
318VYN3 0/I

o\l/
©
>
o
-
+

144

(54

e}

[=]

<
N
5
wN
-
om
<
4
w
>
w
(=]

el
-

(] ©
- N‘
Nr ™
™ ™

8
-

-
w
(2}
o
=

j=}

N

‘

Le

d

NI Asivad
1dNHYILNI

1NO Asiva
1dNHH3LNI

1N0 ASIVA VNG)7

NS+ <5

M3IA dO1
TIV13Aa HOLJO3INNOD O/

NIVHO ASIvad
1dNYY3LNI

‘O'N

NIVHO ASIVa
wa

3SN OL MOH NO 310N ‘ddV 33S

dadnnr
IVNOILdO
QO Lyasn
e {oLav)
LoOVH
6av
AG+ sav
S-S "Ol4
T Gl-2td) 30023A WoY
e 9 e 2 L S » INOY4d
ano €3 ev [44 v £] 13 0L-S 'BId
0z jo—>— S-€14 Ol
scisTH . TRR 1 T
379VYN3 O/I 20p
A\ 91
5z vz £z 2z 1z)\
(0]} LL cl gl vi AG+
L L L L L L _
6| 8| 8| 8| 8| 8|
gc (x4 (x4 gc (x4 (x4
L 9 [v e Z 1 0 ¢-G OId 33S
o/l o/l o/l o/l o/l o/l o/l o/l SN8 W3LSAS
22| 2C_| 20| 2C | 28| [2C_|
vl e | 7l er | lor | | se | | vr | P er
154 134 134 134 154 1574 154
6 (0]} LL cl £l vi 7
9z (74 vz €Z ez ¥4 oN\
M 13 [O—¢
ans 3719vYN3 A3a - r
8€1SL i
2o <
297 v v eV €3
9t L z e 9 _
Lav
AG+ {oav)
sav
vav

149

sng
viva
W3LSAS
JLVISIHL

~

cr

v

144

14

Lva

0O/1 @dvOod-NO 01-S 3dNOld

ova

Svd

88ee

rva

amy
s 2
. i o Ol R 7.,
vvia i H_” ae -
ELIN L] S
Ev@mm_m X7 PHeNL 0z 23 8¢
160 EsH)—9 3
EENVERIS o/l Hw >
WHO 8- %2 |‘
, 9 v [=
My aay ([selsTv2
o\ oy L@@
c
a0 O Cid
_ ko) —O|
T e
= Al 9 g S-S 'DI4 STIV13a 338
aN® 1@ 1D 1D ===
004
€I ey [2%9 vuswe
oxks S = S =
Mei-6id 8 20 10 —o
H3X3dILINN [48Y] e —O v m|aw
viva NI vV1va o)
8ELSIrL
< 311355VD g e
L ol ov [——Bav) 1t
/ e ZHH
= = —O|
o af J od soL% F
ano 90 aND (@/1) 6-S 'OI4 TIv.L3A 335
(D) v.SThL ane 0 ﬂav
az qot|g 6 0l8 o El |‘g €
Z e, (910 11, v oL Goaw = €3 w|aE
152STY L -——av) 2
o ez e0L[Z 7|98 8uls reesws M I z9 €2 13 o—<Zavy s
7
P51 00 L ! QO ez o) g‘m
pz ct | oz €
zL PO+ sa ON f—/— vIH 4 H Sl
g P S ol o n : 9 1z 8 |-—=<Gav) .
oz U €arD, oN |— A 318 ! 7| “gersvs |
L I 518 4 ICETT I KT 4] mm oz v ——<ravy
N — 17 =
5 ONT5 Si| vL|ELf ek 4399141 1ad ! NO vz €Hd ||ﬁ
" | ano
L 9-2v N |- ! ¢ 5 I
— 13S vy 1o 6] 8] ai= v| e| i [ol
Qo g 0oL [emsimsoms i T
G Z R | el
az Ak m 4 _ mNL LL eNv | : N_o 17 8
szsreii]z or] @@ RSV h|v>m+ 2200 Ny i d oz 207 5 NSt
ez B (z10) o O AW ﬁm_,_n_zoo e i 89 O—> G 1408
Por 18 207 | pzi+ = wamn [PF= oz 4 on N5 ! o °2 o |2 €avy s
274 P & st . HT avno peo0 L INYDINY 57 1 59 wNmmNWA_vh €
7 08 o[11a v &_& E7 65 mm_oln_. M5 1o bSO JAOW SIHIH (L htD—0| ez 8 [=~—Gav) »
og = lgd A -Q - -
oz oL L el _ 7 2200 T O'N 9l L89-sOI4 g 3Jovyd (9-v14 59 2z v g ¢
ane oot er—(01a) €LH v vir L1-S 'DId e pid [-
A 13saw ano | T 7 T aaon xin Grid—o 1z
T o] Wvd WOHd[S A = W—gforad N3ID 03dIA a f<—<Qav)
>,W‘ vivd S Ocd aNo 6 ol 340N 1x3aL (r-vid)—5 oz €l
9IHOLVL] 40153NNOD N ! “
advOogAIN NS ! +30003a ss3¥aav
1

NS~

150

FROM
SYSTEM
TIME
FIG. S-3

FROM
SYNC
COUNT
FIG. -4

FROM
LACHED

DATA
FIG. S-8

+5V

FROM
SYNC
COUNT
FIG. S-4

Vi

I
[SENe]

FROM ADD

DECODER F14 HIRES
FiG. s-10 MODE

FROM
SYSTEM
TIME
FIG. $-3

~

FROM
LATCHED
DATA

FIG. S-8

FROM (" TEXT
ADDRRESS |MODE
DECODER F14
FIG. $-10

FROM SYNC
COUNT

FIG. S-4

FROM SYSTEM TIME
FIG. -3

16 74LS02
7 T FROM r4) 74LS11
damy c2 Vee SYSTEM <COLOR REF B13 v
6 TIME RN
° M 15 ou FIG.S-3 [. > 12 COLOR
<LDPS ol D 13 D BURST
+5V T
= 4 4 A3 4 74LS51
(D13-11) 140 a1 Veo o1 c H5 (D13-13 @2
15 5 5 C13-6) TO C12-14
- D 2 C13
D12-14 ” A2 02 — Ha (01314 2 IR
R A3 A5 03 E SELECT
D12-13 - T 7466 From | H3 FIG. S-6
DLO A4 04 F SYNC 13 74LS51
/2)
DL1)—1&] as 0231% os | i—2la COUNT [[o
19 GEN FIG. $-4 12 c13DOB—
DL2 A6 v2 (D11-14
20| a7 2|a 73&830114 | 1])
DL3 B2 13
» IO EERE » vi @12-1D) 7510 1]
DL4 A8 i 12 D—— c14
)2 aw H B GND 741586 \\;j D11-13
(1/4)
gt Jro s e - 74508 (1L5%2
74Ls08= = == = /4)
(114 12 B13
DL6 11 HOR BLANKING
13
=D,
DL7 6
741802
(1/4)
8 555
CURSOR 1 -
FLASHER %
=
C1 8
+5V (=)
12K 3.3M 0.1pF = T s
16
D12-13)—2]108 Veo
14 A8
D14-14 10D
T 10416 7418257
1]1S
EGND ZA zC 10A11A11B 10D zZD zZB 6 |5
159 (84 [o 218 [s [13]7 [12 3[D3 D2
T apd el
R — 4
F14-7 = » o At0
cp
L4M o| 741S194
{LD194 = Lo so
10] S1
cP 11+9 7T16 10 Q0 Q1 Q2
3 So0DSL St 14 |15 |13
DLO DO -
|11 |10J)7 +5V R6-2.7K
b1 B4 I [15[A B STRB ET -5V BV 412V
027418104 |, 14 Vo R8-2.0 Ro
8o o 71°° a9 w 10 (1 | auxiLiary
D3 R7-1.5K Q3 VIDEO
1 9 Eﬂ_ 10 2 AW JACK
CP 1719 = [10 D2 Wy TN, 2N3904
3 so i 3| ,,74LS151 J14B
— 4 po ost £ 4] po 4 PIN MOLEX
22-03-2041
DL5 D1 N ;| 13| s . 03-20
DL6 D274L8194 " | 12 wP—3o ol m L R0 COMPOSITE
5o 03 Q2 D7 ¢ anD B10 200 £ VIDEO
Vcc GND 5 74LS74 POT 27 ouT
116 J_S J__8 (r2) L = K14
= = (&3 RCA TYPE
+5V PHONE JACK
B13 4 811
F14-4 12 13 3 2 14 15 3 2 5 6 B11-6 II;ll\l':;\EBSLE
1) D DO Qo D5 Q5 DO QO 1 J
741502 BS B8 B8 741508 Ig/ :-16]},(012
(172) 74LS 74LS 74LS 4 SELECT
(D11-19) 174 174 174 SELEC
(D11-12— 74LS11 cto cte cle) -
(1/3) 9

<RAS)

[° [°

FIGURE S-11 VIDEO GENERATOR

151

haipist

khaibitgfx@gmail.com

MR TAYE”

o foi
|
|
I

Cupertino, California 95014

(408) 996-1010
New Product Development

10260 Bandley Drive
Steven Jobs
Vice President,

c
=
L]
v
o)
=)
e
€
0
v
Y
c
c
C

o
@l
o
@l
HH
@l
=
@l
-
@l
=
@l

s loi oi foi

"qpple computer Inc.

10260 BANDLEY DRIVE
CUPERTINO, CALIFORNIA 95014 U.S.A.
TELEPHONE (408) 996-1010

	Blank Page

